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Motivating the Fundamental Theorem of Calculus 

Recall that a definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is defined to be the limit of a sum 

lim
𝑛→∞

∑ 𝑓(𝑥𝑖∗)∆𝑥,𝑛
𝑖=1  and this gives the area between the graph of 𝑦 =  𝑓(𝑥) and the 

𝑥-axis on the interval [𝑎, 𝑏] provided 𝑦 =  𝑓(𝑥)  >  0 on [𝑎, 𝑏].   

A car travelling on a straight flat road goes from 0 to 55 

miles per hour in 10 seconds and then travels at a 

constant speed of 55 miles per hour after that.  In the 

first 10 seconds the acceleration (rate of change of 

velocity) is constant.  If the foot markers are placed 

along the road so that the position at t = 0 seconds is 0 

feet and so that the car is travelling in the direction of increasing foot markers 

(that is, the position is increasing), then we found the position function for the car 

to be 

𝑠(𝑡) = {
(

121

30
) 𝑡2    𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 10 

(
1

3
) (242𝑡 − 1210)   𝑓𝑜𝑟 𝑡 > 10

     where t is in sec. and s(t) is in ft. 

 

We also found the velocity function to be  

𝑣(𝑡) = {
(

121

15
) 𝑡    𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 10 

242

3
  𝑓𝑜𝑟 𝑡 > 10

         where t is in sec. and v(t) is in ft/sec. 

The speed function is the same as the velocity function since the position is 

increasing and therefore the rate of change of position (velocity) is positive.  Since 

speed is the absolute value of velocity and the velocity is positive, speed and 

velocity are the same in this example.  Thus, the speed of the car at time t is given 

by the following. 

𝑠𝑝𝑒𝑒𝑑(𝑡) = {
(

121

15
) 𝑡    𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 10 

242

3
  𝑓𝑜𝑟 𝑡 > 10

   where t is in sec. and speed(t) is in ft/sec.  
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The graph of the velocity function follows.  This is also the graph of the speed 

function.   

 

 

Note that the velocity is linear for the first ten seconds (in other words, the rate 

of change of velocity (acceleration) is constant), and then after 10 seconds the 

velocity is constant.     

 

Compute the area between the velocity function graph and the horizontal axis on 

the interval [4,10].    Note that you are just computing the area of a trazepoid and 

you have used a formula from your prior study of geometry for the area of a 

trazepoid, 𝐴 =
(𝑏1+𝑏2)ℎ

2
    Make sure you use the equation for 𝑣(𝑡)  to get exact 

values of the bases, 𝑏1 and 𝑏2, as you will be able to read only approximate values 

from the graph.  However, you should use these approximate values from the graph 

to confirm the reasonableness of your calculated values for the bases. 

seconds 

ft/sec 
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Did you get  
1694

5
  ?   

The area of a trapezoid is 
(𝑏1+𝑏2)∙ℎ

2
   The height is 10 – 4 or 6, and the bases and 

v(4) and v(10).   Now 𝑣(4) = (
121

15
 ) ∙ 4 =

484

15
 and 𝑣(10) = (

121

15
 ) ∙ 10 =

1210

15
.    

So, the area of the trapezoid is 
(

484

15
+

1210

15
)∙6

2
=

1694

5
   

  

But let’s pay attention to the units.  The height represents 10 seconds – 4 seconds 

or 6 seconds.  The bases represent 
484

15

𝑓𝑡

𝑠
 and 

1210

15

𝑓𝑡

𝑠
.  So the area represents  

(
484
15

𝑓𝑡
𝑠

+
1210

15
𝑓𝑡
𝑠 ) ∙ 6𝑠

2
=

1694

5
𝑓𝑡 

So the area between our velocity graph and the horizontal axis on the interval 

[𝟒, 𝟏𝟎] really represents 
1694

5
𝑓𝑡. We will call this Finding 1) and will come back 

to it shortly.    

 

Now using the position function for the motion of the car, compute s(10) – s(4), 

paying attention to units, and think about what this means in practical terms.    
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Did you get 
1694

5
𝑓𝑡 for 𝑠(10) –  𝑠(4) ?  

 𝑠(10) = (
121

30
 ) ∙ 102 =

12100

30
  and 𝑠(4) = (

121

30
 ) ∙ 42 =

1936

30
 so 

𝑠(10) − 𝑠(4) =  
12100

30
−

1936

30
=

10164

30
=

1694

5
 

But let’s pay attention to the units.  The units of 𝑠(𝑡) are feet, so the 
1694

5
 

represents 
1694

5
𝑓𝑡 

So the difference in the ending and beginning positions of the car in the time 

interval [𝟒, 𝟏𝟎] (which is the total distance travelled in this case since the 

motion is such that position is increasing) is 
𝟏𝟔𝟗𝟒

𝟓
𝒇𝒆𝒆𝒕. We will call this Finding 

2). 

 

What do you notice about Finding 1 and Finding 2?  Do you think this is always going 

to be the case and why?    

 

For the particular example we are examining, the total area between the graph of 

the velocity function and the horizontal axis on a chosen interval of time is the 

total distance travelled during that interval of time.  In this example, a 1 by 1 

square unit of area        represents 1 ft because the width is 1 second and the 

length is 1 ft/second, so the product is (1 𝑠𝑒𝑐𝑜𝑛𝑑) ∙ (1 
𝑓𝑜𝑜𝑡

𝑠𝑒𝑐𝑜𝑛𝑑
) = 1 𝑓𝑜𝑜𝑡.  If the 

velocity function changes, this will still be true (as long as time is in seconds and 

distance in feet; if the units are different, the principle is the same.)  Even if the 

velocity function is negative, the total area between the graph of the velocity 

function and the horizontal axis on the interval [𝑎, 𝑏] is the total distance travelled.   

  

Considering the case where 𝑣(𝑡)  >  0, express the relationship above using integral 

notation.     
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Did you write:  In the case of  𝑣(𝑡)  >  0,  we found that ∫ 𝑣(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑠(𝑏) −

𝑠(𝑎) 𝑤ℎ𝑒𝑟𝑒 𝑠′(𝑡) = 𝑣(𝑡)  ? 

Explanation:  We found that the area between the graph of 𝑣(𝑡) and the horizontal 

axis on the interval [𝑎, 𝑏] is the total distance travelled. But when 𝑣(𝑡)  >  0, then  

∫ 𝑣(𝑡)𝑑𝑡
𝑏

𝑎
 is exactly the area between the graph of 𝑣(𝑡) and the horizontal axis on 

the interval [𝑎, 𝑏].   When 𝑣(𝑡)  >  0,  it is also true that  𝑠(𝑏) –  𝑠(𝑎) is the total 

distance travelled.  Also note that since 𝑣(𝑡)  =  𝑠’(𝑡), then 𝑠(𝑡) is an antiderivative 

of 𝑣(𝑡).  Thus, in the case of  𝑣(𝑡)  >  0,  the statement “the total area between the 

graph of the velocity function and the horizontal axis on a chosen interval is the 

total distance travelled during that interval” can be written as  

 ∫ 𝑣(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑠(𝑏) − 𝑠(𝑎) 𝑤ℎ𝑒𝑟𝑒 𝑠′(𝑡) = 𝑣(𝑡). 

This can be generalized to any function 𝑓(𝑥) for which 𝑓(𝑥)  >  0 on [𝑎, 𝑏].  In other 

words, 

∫ 𝒇(𝒙)𝒅𝒙
𝒃

𝒂

= 𝑭(𝒃) − 𝑭(𝒂) 𝒘𝒉𝒆𝒓𝒆 𝑭′(𝒙) = 𝒇(𝒙). 

This is a statement of the Fundamental Theorem of Calculus (Part 2).    It turns 

out that the Fundamental Theorem of Calculus (Part 2)  is also true even if 𝑓(𝑥) is 

not always greater than 0 on the interval [𝑎, 𝑏].   Where 𝑓(𝑥) is a velocity function 

𝑣(𝑡), regardless of whether 𝑣(𝑡)  >  0 or not, ∫ 𝑣(𝑡)𝑑𝑡
𝑏

𝑎
 is the net area between the 

graph of 𝑦 =  𝑓(𝑡) and the horizontal axis on [𝑎, 𝑏], meaning the total area above 

the horizontal axis minus the total area below the horizontal axis, and 𝑠(𝑏) –  𝑠(𝑎) is 

the net distance travelled (the total distance travelled in the positive direction 

minus the total distance travelled in the negative direction.) 
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Teaching Notes 

1) Prior to this lesson students should have computed Riemann sums to approximate 

areas under a curve, found the exact area under a curve by computing 

lim
𝑛→∞

∑ 𝑓(𝑥𝑖∗)∆𝑥,𝑛
𝑖=1  and have been exposed to the fact that the notation 

lim
𝑛→∞

∑ 𝑓(𝑥𝑖∗)∆𝑥𝑛
𝑖=1   is shortened to be  ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
, and thus understanding the 

definite integral as a limit of a sum and understanding that when a function is 

positive, the definite integral gives the exact area between the graph of the function 

and the x-axis on the interval [𝑎, 𝑏].  They should also realize that ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 gives 

net area between the graph of the function and the x-axis on the interval [𝑎, 𝑏] 

when it is not true that 𝑓(𝑥)  >  0 throughout [𝑎, 𝑏].    It should be emphasized that 

a definite integral MEANS something very different from an indefinite integral 

∫ 𝑓(𝑥)𝑑𝑥 which is defined to be the most general antiderivative of f. Definite 

integrals have numerical values while indefinite integrals are functions, thus 

emphasizing the fact that they mean different things.  But why are they both called 

integrals and have such similar symbolism if definite and indefinite integrals mean 

different things?  Obviously there has to be some connection; otherwise using such 

similar notation for such dissimilar things would be foolhardy.  The connection is the 

fundamental theorem of calculus. This is the backdrop which sets the stage for the 

lesson, Motivating the Fundamental Theorem of Calculus. The fundamental theorem 

of calculus gives an important connection between differential and integral calculus, 

between antiderivatives (indefinite integrals) and definite integrals.  

 

2) This discussion in this lesson is about motivating part 2 of the Fundamental Theorem 

of Calculus, and does not refer to part 1. 


