Objective: Interpret a quadratic function from an algebraic, numerical, graphical, and verbal perspective and extract information relevant to the phenomenon modeled by the function.

Example A. Using the same data from Linear Function Review. Consider the data which represents the average monthly high temperatures in one Southern US city during the year 2020.

Jan	Feb	Mar	Apr	May	Jun
47	52	61	71	78	86
Jul	Aug	Sep	Oct	Nov	Dec
89	89	82	72	60	49

1. We could write this data in an x/y chart or in table form.

Month (Using January =1)	Temperature	
1	47	
2	52	
3	61	
4	71	
5	78	
6	86	
7	89	
8	89	
9	82	
10	72	
11	60	
12	49	

2. Using your calculator, enter this data to create a scatterplot and perform a quadratic regression. Press, STAT, EDIT, and enter your x-values in L1 and y-values in L2.

to harm on scatter plot, and y= (stat plot) selected "on" Zoom #9

Tricia Rushton, Department of Mathematical Sciences, Middle Tennessee State University OER Resources: Guided Notes - Quadratic Function Review

	martView™ CE for the TI-84 Plus Family [Trial Version	n]	- 0 ×
File	Edit View Actions Help		
100	<u></u> ≣~ ₹ % = ©		
	TEXAS INSTRUMENTS TI-84 Plus CE	NORMAL FLOAT AUTO REAL RADIAN MP	
Þ	y= window zoom trace graph	L1 L2 L3 L4 L5 2 1 47 2 52	
	2nd mode del A-bock link link link alpha X.T.Ø.n stat link	3 61 4 71 5 78	
	test A angle B draw C diatr math apps prgm vars clear matrix D sim ¹ E cos ¹ F tar ¹ G π H x ⁻¹ sin cos tan ^ :	6 86 7 89 89 89 9 82 9	
	x ² , () ÷	10 72 11 60	
	10 ^k N U O V P W O [R log 7 8 9 × e ^k S L4 T L5 U L6 V] W	L2(1)=47	
	In 4 5 6 -	 Key Press History	CLEAR
	sto + 1 2 3 + off catalog = i 1 ars ? entry solve	graph zoom y zoom som som som som som som som som som	y=
	on O · (-) enter	entry solve table f5 tblset f2 format f3 * ≜ ☆ ≡ entry solve list entry solve enter2 graph window zoom ✓ enter stat enter	1
4	$ \mathcal{P} $ Type here to search	○ !! ♥ ② ;	B 3:00 PM 6/17/2021 ₽

3. Write the predicted regression equation using function notation and graph. Press, STAT, CALC, QUADReg, Xlist: L1, Ylist: L2, StoreRegEq:Y1, Calculate

 $Y = -1.54 x^2 + 18.31 x + 23.14$

Tricia Rushton, Department of Mathematical Sciences, Middle Tennessee State University OER Resources: Guided Notes - Quadratic Function Review

Page 2 of 4

4 Does this model better fit the data?

Ves

5. Using the predicted model, what is f (5) and what does this mean?

 $f(5) \approx -1.34(5)^2 + 18.31(5) + 23.14$ f(5) x 81.22 In May, we would predict the ade monthly high Using the predicted model where the

6. Using the predicted model, what is f (7.5) and what does this mean?

F(7.5) 285.19 In mid-fuly, the doe high temp is 285.19

Tricia Rushton, Department of Mathematical Sciences, Middle Tennessee State University OER Resources: Guided Notes - Quadratic Function Review

Page 3 of 4

7. Using the predicted model, when is the temperature most likely to be 65°? Write this in function notation.

go to y= , set y= 65 At the end of February, the alle monthly high temp = 65 f(2.9)265 F(10.8)265 At the end of October, the ave monthly high the ja ja max. pulieted temp zers.s this occurs toward parts. 9. M 9. What is f (18). Does this make sense based on our model? What would be a reasonable domain be for this model? deept make sense months Domain should be between dan-interval notation [1,13] bespot lude indude

Tricia Rushton, Department of Mathematical Sciences, Middle Tennessee State University OER Resources: Guided Notes - Quadratic Function Review

Page 4 of 4