

DIRECTIONS FOR INSTRUCTOR USE OF THE SOFTWARE ENGINEERING II ASSESSMENT
RUBRIC

This rubric is intended for use in evaluating student ability to apply design and development principles in the construction of software
systems of varying complexity. Instructors should share copies of the assessment rubric with students in advance of the students'
participation in assignments so that they will understand what is expected of them on the assignment and how they will be evaluated.

To use the rubric, the evaluator should place check marks in the boxes corresponding to their evaluation of the various dimensions of
the student’s performance.

The rubric is set up with four levels of performance (i.e., unacceptable, developing, competent, exemplary) that can be achieved by the
student during the assignment.

• unacceptable: :
The student does not demonstrate sufficient knowledge, skills or abilities with respect to this dimension and therefore, does not
meet the instructor's expectations.

• developing:
The student demonstrates only the initial knowledge, skills or abilities with respect to this dimension and therefore, does not
meet the instructor's expectations.

• competent:
The student demonstrates sufficient knowledge, skills or abilities with respect to this dimension, and thereby basically meets
the instructor's expectations.

• exemplary:
The student demonstrates greater knowledge, skills, or abilities than expected by the instructor, and thereby exceeds the
instructor's expectations with respect to this dimension.

MTSU Computer Science Software Engineering II Rubric version 1.0 Last Change 8/23/2011

Name of Individual being evaluated:

Name of Evaluator:

Performance

Criteria Unacceptable Developing Competent Exemplary

The student
applies modern
design
techniques to
ensure code
meets design
specifications

The student develops
code without following
the design spec and/or
without using
structured and OO
programming
techniques. The code
must usually be
rewritten by others

The student develops code
that follows the design spec,
is designed based on
structured and OO
programming techniques, but
often must be revised
somewhat with the help of
others before it is acceptable

The student develops code
that follows the design
spec, is designed based on
structured and OO
programming techniques,
utilizes design patterns
where appropriate, and is
delivered with little or no
help from others

The student performs
competently and in
addition notices flaws in
or improvements that can
be made to the design
spec and consistently
delivers as well as helps
others to deliver code that
is of exceptional quality

The student
follows
established
processes and
utilizes design
and code
reviews in
software system
development

In team assignments,
the student neglects
reviews of teammates’
work and fails to
deliver design and code
for review by his/her
teammates

In team assignments, the
student conducts superficial
reviews of teammates’ work
and delivers design and code
too late for his/her teammates
to review at length

In team assignments, the
student conducts basic
reviews of teammates’
work and delivers design
and code in time for a
basic review by his/her
teammates.

In team assignments, the
student conducts rigorous
reviews of teammates’
work and delivers design
and code in time for a
thorough review by
his/her teammates

The student
performs
thorough
testing of
developed
software system

The student performs
minimal unit testing of
own code,
concentrating
exclusively on the
simplest, most obvious
cases

The student performs black-
box unit testing of own code,
using reasonable sample of
average and extreme test
cases

The student plans and
executes thorough list of
test cases for black-box
testing of his/her own code
as well as the team’s
integrated code, with
expected results specified

The student plans and
executes thorough list of
test cases for black-box
unit and system testing,
as well as white-box
testing of modules
produced by his/her
teammates

