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1. Find and solve the Euler-Lagrange equation that make the following integrals stationary.

(a)

I =

t2∫
t1

√
t
√
1 + q̇2dt, (1)

where t is the independent variable and q̇ = dq
dt .

(b)

I =

y2∫
y1

(
x2 + x′2

)
dy (2)

here y is the independent variable and x′ = dx
dy .

(b)

I =

θ2∫
θ1

θ
(√

1− r′2
)
dθ, (3)

θ is the independent variable and r′ = dr
dθ .

Solution:

(a) For the integral the Euler-Lagrange equation is given by

d

dt

(
dL

dq̇

)
− dL

dq
= 0 (4)

where
L (t, q, q̇) =

√
t
√
1 + q′2, (5)

which leads to
dL

dq
= 0,

dL

dq′
=

√
tq̇√

1 + q̇2
. (6)

Then the Euler-Lagrange equation becomes

d

dt

[ √
tq̇√

1 + q̇2

]
= 0⇒

√
tq̇√

1 + q̇2
= C, (7)

where C is a constant. Simplifying the above expression, we find

tq̇2 = C2(1 + q̇2)⇒
(
t− C2

)
q̇2 = C2 ⇒ q̇ =

C√
t− C2

⇒ dq

dt
=

C√
t− C2

⇒
q∫

q1

dq = C

t∫
t1

dt√
t− C2

(8)

Let

u = t− C2 ⇒ du = dt, t = u+ C2

q (u)− q1 = C

u+C2∫
u1+C2

du√
u
= C

(√
u+ C2 −

√
u1 + C2

)
(9)

or
q (t) = C

(√
t−
√
t1

)
+ q1 ⇒ q (t) = C1

√
t+ C2. (10)
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(b) For this integral the independent variable is y and the Euler-Lagrange equation is given by

d

dy

(
dL

dx′

)
− dL

dx
= 0 (11)

where
L (x, y, y′) = x2 + x′2. (12)

Noting that
dL

dx
= 2x,

dL

dx′
= 2x′. (13)

the Euler-Lagrange equation becomes

d

dy
(2x′)− 2x = 0⇒ d2x

dy2
− x = 0,

the solution of which is given by
x (y) = C1e

−y + C2e
y.

(c) For the integral

I =

θ2∫
θ1

θ
(√

1− r′2
)
dθ, (14)

θ is the independent variable and r′ = dr
dθ . Thus the Euler-Lagrange equation can be written as

d

dθ

(
dL

dr′

)
− dL

dr
= 0 (15)

where
L (θ, r, r′) = θ

(√
1− r′2

)
. (16)

Noting that
dL

dr
= 0,

dL

dr′
= − θr′√

1− r′2
= C. (17)

where C is a constant. Simplifying the above expression, we find

θ2r′2 = C21 (1− r′2)⇒
(
θ2 + C2

)
r′2 = C21 ⇒ r′ =

C1√
θ2 + C2

⇒ dr

dθ
=

C1√
θ2 + C21

⇒
r∫

r1

dr = C1

θ∫
θ1

dθ√
θ2 + C21

(18)

⇒ r (θ) = r1 + C1

θ∫
θ1

dθ√
θ2 + C21

. (19)

Introducing the transformation defined by

θ = C1 sinh (u)⇒ dθ = C1 cosh (u) du (20)

one can write the integral as∫
dθ√

θ2 + C2
=

∫
C1 cosh (u) du√
C21 sinh

2 (u) + C21

=

∫
du = u+ C2 (21)

where we used the relation
sinh2 (u) + 1 = cosh2 (u) (22)
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and C2 is a constant. Then noting that

u = sinh−1
[
θ

C1

]
(23)

we can write ∫
dθ√

θ2 + C2
= sinh−1

[
θ

C1

]
+ C2 (24)

so that Eq. (19) becomes

r (θ) = r1 + C1

[
sinh−1

[
θ

C1

]
+ C2

]θ
θ1

= r1 + C1

[
sinh−1

[
θ

C1

]
+ C2

]
− C1

[
sinh−1

[
θ1
C1

]
+ C2

]
⇒ r (θ) = C1 sinh

−1
[
θ

C1

]
+ C ′2 (25)

where

C ′2 = r1 − C1 sinh−1
[
θ1
C1

]
, (26)

which is a constant.

2. From introductory physics you know that light travels with a speed, c = 3× 108m/s, in vacuum. When it travels
in a medium with a refractive index, n > 1 the light slows down and the speed, v is given by

v =
c

n
. (27)

You also know that when light travels from one medium with refractive index n1to another with refractive
index, n2, the light could bend towards or away from the normal depending on which refractive index is greater
or less (Fig. 1). Using Calculus of variation show that,

Figure 1: Different straight-line paths for the light traveling from point1 to point 2. The incident light partly gets
reflected and partly gets refracted. The shortest paths are defined by the law of reflection and law of refraction.

(a) The angle of incidence, θ1, and angle of transmission, θ2, are related by the law of refraction (Snell’s law)

n1 sin θ1 = n2 sin θ2. (28)

Hint:Minimize the time taken by the light

I =

2∫
1

dt, (29)

Note that dt is an infinitessimal time for the light to travel an infinitessimal distance ds along the path of the
light.
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(b) The angle of incidence, θ1, and the angle of reflection, θ′1,are related by the low of reflection

θ1 = θ′1. (30)

Hint:Minimize the time taken by the light

I =

3∫
1

dt. (31)

N.B. In either case the light travels in a straight line.

Solution:

(a) For the trajectory of the light, the total time to propagate from point 1 with (x1, y1) to point 2 (x2, y2) must be
minimum. As shown in the figure, the light has traveled a distance d1 and d2 along a straight line in medium
1 and medium 2, respectively. Then the time taken by the light in the two media can be determined from the
speed of light

v1 =
c

n1
⇒ d1

t1
=

c

n1
⇒ t1 =

n1d1
c

, (32)

and

v2 =
c

n2
⇒ d2

t2
=

c

n2
⇒ t2 =

n2d2
c

. (33)

so that the total time becomes

t =
n1d1 + n2d2

c
(34)

Noting that

d1 =

√
(x− x1)2 + y21 , d2 =

√
(x2 − x)2 + y22 (35)

one can write

t =
1

c

[
n1

√
(x− x1)2 + y21 + n2

√
(x2 − x)2 + y22

]
. (36)

For different paths shown by the pink dotted lines, what varies is x.For the right path of the light, the time
must be minimum. That means

dt

dx
= 0 (37)

so that

1

c

n1 x− x1√
(x− x1)2 + y21

− n2
x2 − x√

(x2 − x)2 + y22

 = 0. (38)

From the figure shown we have

sin θ1 =
x− x1√

(x− x1)2 + y21
, sin θ2 =

x2 − x√
(x2 − x)2 + y22

(39)

so that one can easily find
n1 sin θ1 = n2 sin θ2. (40)

which is Snell’s law.

(b) Following a similar procedure for the reflected light one can write for the time to go from point 1 to point 3

t =
1

c

[
n1

√
(x− x1)2 + y21 + n1

√
(x3 − x)2 + y23

]
. (41)

For different paths shown by the pink dotted lines, what varies is x.For the right path of the light, the time
must be minimum. That means

dt

dx
= 0 (42)
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so that

n1
c

 x− x1√
(x− x1)2 + y21

− x3 − x√
(x3 − x)2 + y23

 = 0. (43)

From the figure shown we have

sin θ1 =
x− x1√

(x− x1)2 + y21
, sin θ′1 =

x3 − x√
x2B + (−yB)

2
(44)

so that one can easily find
sin θ1 = sin θ

′
1 ⇒ θ1 = θ′1 (45)

which is the low of reflection.

3. This is a sort of reading assignment in my note or in the text. Starting from

I (ε) =

∫ x2

x1

F (x, Y, Y ′) dx,

where
Y (x) = y (x) + εη (x) ,

derive the Euler-Lagrange Equation.
∂

∂x

(
∂F

∂y′

)
− ∂F

∂y
= 0,

by applying calculus of variation.

Figure 2: A surface defined by the function F (x, y (x) , y′ (x) = dy
dx )

Solution: The Euler-Lagrange Equation is derived by applying the calculus of variation. In general, in the prob-
lem that we want to solve applying the calculus of variation, we know the coordinates of two different points
(x1, y (x1) , y

′ (x1)) and (x2, y (x2) , y′ (x2)) on the surface defined by F = F (x, y (x) , y′ (x)). From the infinitely
many trajectories that can connect these two points, there is only one trajectory on this surface that is the
shortest (the Geodesic). Finding the Geodesic is the general problem that can be solved applying the calculus
of variation. The surface is defined by the function F (x, y (x) , y′ (x)). The distance between these two points
determined by evaluating the integral

I =

∫ x2

x1

F (x, y (x) , y′ (x)) dx. (46)

To determine the equation that the function F is governed by so that we find the shortest length joining the
two points, let the function for any path connecting the two points be Y (x) . From these infinite number of
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functions there is only one function that gives the minimum distance between the two points. If this function
is y (x) , then we may write Y (x) in terms of y (x) as

Y (x, ε) = y (x) + εη (x) , (47)

where η (x) is an arbitrary function which must satisfy the condition

η (x1) = η (x2) = 0 (48)

so that at the two points (x = x1 = x2), we find

Y (x, ε) = y (x) . (49)

We also have
dY (x, ε)

dε
= η (x)⇒ dY (ε)

dε

∣∣∣∣
ε=0

= η (x) , (50)

and
dY

dx
=
dy

dx
+ ε

dη

dx
or Y ′ (x, ε) = y′ (x) + εη′ (x)⇒ Y ′ (x, ε)|ε=0 = y′ (x) , (51)

which gives
dY ′ (ε)

dε
=

d

dε
[y′ (x) + εη′ (x)] = η′ (x)⇒ dY ′ (ε)

dε

∣∣∣∣
ε=0

= η′ (x) . (52)

For the Geodesic the integral

I (ε) =

∫ x2

x1

F (x, Y (x, ε) , Y ′ (x, ε)) dx, (53)

must be stationary, that means

dI (ε)

dε

∣∣∣∣
ε=0

=

∫ x2

x1

d

dε
[F (x, Y (x, ε) , Y ′ (x, ε))]

∣∣∣∣
ε=0

dx = 0. (54)

Noting that

d

dε
[F (x, Y (x, ε) , Y ′ (x, ε))]

∣∣∣∣
ε=0

=
∂F

∂Y

dY (ε)

dε
+
∂F

∂Y ′
dY ′ (ε)

dε

∣∣∣∣
ε=0

=
∂F

∂Y

∣∣∣∣
ε=0

dY (ε)

dε

∣∣∣∣
ε=0

+
∂F

∂Y ′

∣∣∣∣
ε=0

dY ′ (ε)

dε

∣∣∣∣
ε=0

(55)

and substituting

Y (x, ε)|ε=0 = y (x) ,
dY (ε)

dε

∣∣∣∣
ε=0

= η (x) , Y ′ (x, ε)|ε=0 = y′ (x) ,

dY ′ (ε)

dε

∣∣∣∣
ε=0

= η′ (x) , (56)

we find

d

dε
[F (x, Y (x, ε) , Y ′ (x, ε))]

∣∣∣∣
ε=0

=

[
∂

∂y
F (x, y (x) , y′ (x))

]
η (x)

+

[
∂

∂y′
F (x, y (x) , y′ (x))

]
η′ (x) , (57)

Then the integral for the Geodesic line becomes

dI (ε)

dε

∣∣∣∣
ε=0

=

∫ x2

x1

[
∂

∂y
F (x, y (x) , y′ (x))

]
η (x) dx+ (58)

+

∫ x2

x1

[
∂

∂y′
F (x, y (x) , y′ (x))

]
η′ (x) dx. (59)
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Using integration by parts the second integral can be rewritten as∫ x2

x1

[
∂

∂y′
F (x, y (x) , y′ (x))

]
η′ (x) dx = η (x)

∂

∂x

[
∂F

∂y′

]∣∣∣∣x2
x1

−
∫ x2

x1

η (x)
∂

∂x

[
∂F

∂y′

]
η (x) dx, (60)

so that using
η (x1) = η (x2) = 0, (61)

we find ∫ x2

x1

[
∂

∂y′
F (x, y (x) , y′ (x))

]
η′ (x) dx = −

∫ x2

x1

η (x)
∂

∂x

[
∂F

∂y′

]
η (x) dx. (62)

Thus the stationary integral can be put in the form

dI (ε)

dε

∣∣∣∣
ε=0

=

∫ x2

x1

[
∂

∂y
F (x, y (x) , y′ (x))

]
η (x) dx+

−
∫ x2

x1

η (x)
∂

∂x

[
∂F

∂y′

]
η (x) dx = 0. (63)

or
dI (ε)

dε

∣∣∣∣
ε=0

=

∫ x2

x1

[
∂

∂x

[
∂F

∂y′

]
− ∂F

∂y

]
η (x) dx = 0. (64)

There follow that
∂

∂x

(
∂F

∂y′

)
− ∂F

∂y
= 0 (65)

where F = F (x, y (x) , y′ (x)).

4. Re-do Example 9.2 (in my note) applying Euler-Lagrange Equation,

∂

∂x

(
∂F

∂y′

)
− ∂F

∂y
= 0,

or
∂

∂y

(
∂F

∂x′

)
− ∂F

∂x
= 0,

whichever is easier.

Solution: We begin from the integral

L =

∫ (2)

(1)

√
1 +

(
dy

dx

)2
dx (66)

which can be put in the form

L =

∫ x2

x1

F (x, y (x) , y′ (x)) dx (67)

where
F (x, y (x) , y′ (x)) =

√
1 + y′2.

The noting that
∂F

∂y
= 0,

∂F

∂y′
=

y′√
1 + y′2

The Euler-Lagrange equation becomes

∂

∂x

(
y′√
1 + y′2

)
= 0⇒ y′√

1 + y′2
= c.
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where c is a constant. Upon solving for y′

y′ =

[
c2

1− c2

]1/2
= m. (68)

Note that we have introduced another constant in terms of the constant c. There follows that

dy

dx
= m⇒ y (x) = mx+ b, (69)

which is equation of a straight line.

5. Consider a surface of revolution generated by revolving a curve y (x) about the x-axis. The curve is required
to pass through fixed end points (x1, y1) and (x2, y2) as shown in Fig. 3. Find the curve y (x) that gives the
minimum area for the resulting surface using the Euler-Lagrange Equation.

Solution: The surface area generated as shown in Fig.?? can be determined using the surface integral

A =

∫ p2

p1

2πy (x) ds =

∫ y2

y1

2πy (x)

√
1 +

(
dx

dy

)2
dy =

∫ y2

y1

F (y, x (y) , x′ (y))dy.

where
F (y, x (y) , x′ (y)) = 2πy

√
1 + x′2.

Noting that
∂F

∂x
= 0,

∂F

∂x′
=

2πyx′√
1 + x′2

,

and using Euler-Lagrange Equation,
d

dy

(
∂F

∂x′

)
− ∂F

∂x
= 0.

we find

d

dx

(
yx′√
1 + x′2

)
= 0⇒ yx′√

1 + x′2
= c⇒ y2x′2

1 + x′2
= c2

⇒ dx

dy
=

c√
y2 − c2

⇒ x (y2) =

∫ y2

y1

cdu√
u2 − c2

Introducing the transformation defined by

y = c cosh (θ)⇒ dy = c sinh (θ) dθ,
√
y2 − c2 = c

√
cosh2 (θ)− 1 = c sinh (θ)

we find ∫
cdy√
y2 − c2

=

∫
c2 sinh (θ) dθ

c sinh (θ)
= cθ.

Noting that

θ = cosh−1
(y
c

)
one finds

x (y2) =

∫ y2

y1

cdu√
u2 − c2

= c cosh−1
(y
c

)∣∣∣y2
y1
= c cosh−1

(y2
c

)
+ c1

⇒ x (y2)− c1
c

= cosh−1
(y2
c

)
⇒ y2 (x2) = c cosh

(
x2 − c1

c

)
.

or more generally

y (x) = c cosh

(
x− c1
c

)

9



6. The speed of an electromagnetic wave in an atmosphere increases in proportion to the height, v (y) = y/b, where
b > 0 is some parameter describing the speed of the electromagnetic wave. This shows that, for example, the
speed becomes zero when the height is zero (i.e. y = 0⇒ v = 0) which simulates the condition at the surface
of a black hole, called its even horizon, where the gravitational force is so strong that the velocity of light goes
to zero, thus even trapping the light. Find the optical path in an atmosphere. Hint: the optical path must be
a shortest path and do not expect a straight line.

Figure 3: A curve rotated about the x-axis.

1.
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