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1. In Example 9.4 using the Euler-Lagrange equation we had solved the brachystochrone problem, assuming the
“material point” starts from rest, . We did show that in fact the shortest time if defined by an equation of an
inverted cycloid

x =
1

2c
(θ − sin (θ)) , y = − 1

2c
(1− cos (θ)) . (1)

Show that when the material point starts with some initial velocity, v0, still the shortest time path is defined
by an inverted cycloid.

Solution: If the particle is given an initial velocity vo 6= 0, the path of minimum time must be minimum. That
means we have to minimize the integral.

I =

2∫
1

dt (2)

From conservation of energy we have
1

2
mv2 −mgy = 1

2
mv2o , (3)

where vo is the initial velocity, so that

1

2
mv2 =

1

2
mv2o +mgy ⇒ v2 = v2o + 2gy ⇒ v =

√
v2o + 2gy. (4)

Recalling that

v =

√(
dx

dt

)2
+

(
dy

dt

)2
⇒ v =

√
1 +

(
dx

dy

)2
dy

dt

⇒ v =
√
1 + x′2

dy

dt
(5)

we may write √
1 + x′2

dy

dt
=
√
v2o + 2gy ⇒ I =

2∫
1

dt =

2∫
1

√
1 + x′2dy√
v2o + 2gy

, (6)

where

x′ =
dx

dy
. (7)

Then the Euler-Lagrnage equation for the above integral becomes

d

dy

(
dL

dx′

)
− dL

dx
= 0, (8)

in which

L =

√
1 + x′2√
v2o + 2gy

(9)

Noting that
dL

dx
= 0,

dL

dx′
=

x′√
1 + x′2

√
v2o + 2gy

(10)

we Find
d

dt

[
x′√

1 + x′2
√
v2o + 2gy

]
= 0⇒ x′√

1 + x′2
√
v2o + 2gy

=
√
C (11)

where C is a constant solving for x′

x′2 = C
(
1 + x′2

) (
v2o + 2gy

)
⇒ x′2

[
1− C

(
v2o + 2gy

)]
= C

(
v2o + 2gy

)
⇒ x′ =

√
C (v2o + 2gy)√

1− C (v2o + 2gy)
⇒

y∫
y1

√
C (v2o + 2gy)√

1− C (v2o + 2gy)
dy =

x∫
x1

dx. (12)
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Assuming the initial positions are (x1, y2) = (0, 0), we find

x =

y∫
0

√
C (v2o + 2gy)dy√
1− C (v2o + 2gy)

. (13)

Introducing the transformation defined by

C
(
v2o + 2gy

)
= sin2

(
θ

2

)
=
1

2
(1− cos θ) (14)

we have

√
1− C (v2o + 2gy) =

√
1− sin2

(
θ

2

)
= cos

(
θ

2

)
,

C2gdy = sin

(
θ

2

)
cos

(
θ

2

)
dθ ⇒ dy =

1

2cg
sin

(
θ

2

)
cos

(
θ

2

)
dθ, (15)

so that the above integral becomes

x =

θ∫
θo

sin
(
θ
2

)
1
2cg sin

(
θ
2

)
cos θ
2 dθ

cos θ
2

⇒ x =
1

2cg

θ∫
θo

sin

(
θ

2

)
dθ

⇒ x =
1

2cg

θ∫
θo

1

2
(1− cos θ) dθ ⇒ x =

1

4cg
[θ − sin θ] |θθo

⇒ x = xo +
1

4cg
[θ − sin θ]⇒ x− xo =

1

4cg
[θ − sin θ] , (16)

where
xo =

1

4cg
[θo − sin θo] . (17)

and θo is determined from

C
(
v2o + 2gy

)
= sin2

(
θ

2

)
=
1

2
(1− cos θ) (18)

for y = y1 = 0, which will be

cv2o =
1

2
(1− cos θo)⇒ cos θo = 1− 2cv2o ⇒ θo = cos

−1 [1− 2cv2o]
Solving for y, we have

2cgy = −cv2o +
1

2
(1− cos θ)⇒ y =

−cv2o
2cg

+
1

4cg
(1− cos θ)

⇒ y − yo =
1

4cg
(1− cos θ) , (19)

where

yo =
cv2o
2cg

(20)

Therefore the path of minimum time is still a cycloid. The only difference is the center of the cycloid will not
be zero if it is given an initial velocity. The center will be (xo, yo) that depends on the initial velocity

x− xo =
1

4cg
[θ − sin θ] , y − yo =

1

4cg
(1− cos θ) . (21)
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2. Consider the motion of a mass m moving under the influence of a central force (that is, a force acting only along
the radial direction) given by

~F = −f(r)r̂ (22)

for some function f(r). Assume that the motion is confined to a plane and the position of the mass can be
described using polar coordinates (r, ϕ)

~r = r cos (ϕ) x̂+ r sin (ϕ) ŷ (23)

where ϕ = 0,as shown in Fig.1

Figure 1: A mass m under a central force motion confined to the x-y plane.

(a) Find the Lagrangian

(b) Using Euler-Lagrange equation find the equation of motion for the mass for the radial and angular coordinates
(i.e. r and ϕ). Show that one of these equations gives you the law of conservation of angular momentum, ~L,

d~L

dt
= I

d~ω

dt
= 0⇒ ~L = I~ω = Constant, (24)

where I = mr2 is the moment of inertia.

(c) For the case in which the radial distance is a constant

ṙ =
dr

dt
= 0 (25)

you will find the equation of motion for a mass, m, moving in circle

mrθ̇
2
= −f(r)⇒

m
(
rθ̇
)2

r
= −f(r)⇒ mv2

r
= −f(r), (26)

Solution:

(a) The kinetic energy

T =
1

2
mv2. (27)

Using spherical coordinates (r, θ = π/2, ϕ) the magnitude of the velocity can be expressed as

~v =
d~r

dt
=

d

dt

[
r sin

(π
2

)
cos (ϕ) x̂+ r sin

(π
2

)
sin (ϕ) ŷ + r cos

(π
2

)
ẑ
]

~v = [ṙ cos (ϕ)− r sin (ϕ)] x̂+ [ṙ sin (ϕ) + r cos (ϕ)] ŷ

⇒ v2 = ṙ2 + r2θ̇
2

(28)
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and the kinetic energy becomes

T =
1

2
m
(
ṙ2 + r2θ̇

2
)
. (29)

(b) The potential energy is related to the central force by

~F = −∇ · U (r) (30)

where U (r) is the potential energy. Since the force is a central force it is directed along the radial direction
and it depends on r only. Therefore the potential energy can be expressed as

U (r) =

∫
f(r) dr. (31)

Then the Lagrangian can be expressed as

L
(
t, r, ṙ, θ, θ̇

)
= T − U = 1

2
m
(
ṙ2 + r2θ̇

2
)
−
∫
f(r) dr (32)

Then using the Euler-Lagrange’s equation

∂

∂t

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0 (33)

we have
∂

∂t

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0,
∂

∂t

(
∂L
∂ṙ

)
− ∂L
∂r

= 0 (34)

so that using
∂L
∂θ

= 0,
∂L
∂θ̇

= mr2θ̇,
∂L
∂r

= mrθ̇
2 − f(r), ∂L

∂ṙ
= mṙ (35)

we find

∂

∂t

(
∂L
∂θ̇

)
= 0⇒ ∂L

∂θ̇
= const⇒ mr2θ̇ = cont⇒ Iω = cons. (Conservation of Ang. Mom.)

∂

∂t

(
∂L
∂ṙ

)
− ∂L
∂r

= 0⇒ mr̈ = mrθ̇
2 − f(r) (36)

(c) For a circular motion where the radius is fixed, ṙ = 0, we find

mrθ̇
2
= −f(r)⇒

m
(
rθ̇
)2

r
= −f(r)⇒ mv2

r
= −f(r), (37)

which relates the centripetal acceleration, ac = v2/r, that you were introduced in introductory physics.

3. A one-dimensional harmonic oscillator : Consider a mass, m, attached to one end of a spring with spring constant,
k, . Find the Lagrangian and the equation of motion for the mass using the Euler-Lagrange equation for the
following two cases.

(a) The other end of the spring is attached to a wall as shown in Fig. and the mass is oscillating on a frictionless
table.

(b) The other end of the spring is attached to a ceiling as shown in Fig.3 and the mass is oscillating in a vertical
plane.

Solution:

5



Figure 2: A harmonic oscillator in a horizontal plane.

Figure 3: A harmonic oscillator in a vertical plane.

(a) For a particle moving along the x axis with a potential energy

U =
1

2
kx2 (38)

the Lagrangian is given by

L = T − U = 1

2
mẋ2 − 1

2
kx2. (39)

Then the equation of motion is described by the Euler-Lagrange equation

d

dt

(
dL

dẋ

)
− dL

dx
= 0⇒ d

dt
(mẋ) + kx = 0⇒ mẍ = −kx⇒ F = ma = −kx (40)

(b) In this case we have potential energy and also the motion is in the vertical plane. Thus one can write

Uel =
1

2
ky2, Ug = mgy (41)

and for the Lagrangian

L = T − U = 1

2
mẏ2 − 1

2
ky2 −mgy. (42)

Then the equation of motion is described by the Euler-Lagrange equation

d

dt

(
dL

dẏ

)
− dL

dy
= 0⇒ d

dt
(mẏ) + ky +mg = 0⇒ mÿ = −ky −mg ⇒ F = ma = ky +mg (43)

4. Consider two masses, m1 mass m2, connected by a string of length, l, with negligible mass. The string passes
through a hole at the center of a table . The mass m1 is on the table and it can move on the table. The surface
of the table is frictionless. The second mass, m2, hanging from the other end of the string can move up or
down on a vertical plane. (see Fig. 4.

(a) Using cylindrical coordinates (r, ϕ, z), find the Lagrangian

(b) Find the equation of motion for the two masses using Euler-Lagrange equation.

Solution:
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Figure 4: Two masses connected by a string of length l. In cylindrical coordinates the position for m1 is (r, ϕ, 0) and
for m2 is (0, 0,−z2). Note that z2 + r = l.

(a) Using cylindrical coordinates the position of the mass on the table can be written as

~r1 = r cos (θ) x̂+ r sin (θ) ŷ (44)

and that of the second mass
~r1 = −zẑ (45)

were we set the origin at the center of the table. Then Kinetic energy of the two masses can be expressed as

T =
1

2
m

[
ṙ2 +

(
rθ̇
)2]

+
1

2
mż2. (46)

The potential energy, assume the table is the ground level for gravitational potential energy, is given by

U = −mgz. (47)

Noting that
r + |z| = l = constant⇒ ṙ = − |ż| (48)

one can write the Lagrangian as

L = T − U = 1

2
m

[
ṙ2 +

(
rθ̇
)2]

+
1

2
mż2 +mgz =

1

2
m

[
ṙ2 +

(
rθ̇
)2]

+
1

2
mṙ2 +mg (l − r)

⇒ L =
1

2
m

[
2ṙ2 +

(
rθ̇
)2]

+mg (l − r) . (49)

(b) Using this Lagrangian, we have

dL

dṙ
= 2mṙ,

dL

dr
= mrθ̇

2 −mg, dL
dθ̇

= mr2θ̇,
dL

dθ
= 0 (50)

so that for the equations of motion, given by

d

dt

(
dL

dṙ

)
− dL

dr
= 0,

d

dt

(
dL

dθ̇

)
− dL

dθ
= 0, (51)

one finds

d

dt
(2mṙ)−mrθ̇2 −mg = 0⇒ r̈ =

1

2

(
g − rθ̇2

)
,

d

dt

(
mr2θ̇

)
= 0⇒ mr2θ̇ = constant (52)
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5. Find the magnitude of the vector pointing from point P to point Q, when these points are

(a) P = (4,−1, 2, 7) and Q = (2, 3, 1, 9).

(b) P = (−1, 5,−3, 2, 4) and Q = (2, 6, 2, 7, 6).

(c) Points described by the Minkowski space-time coordinates, P = (x1, y1, z1, ct1) and P = (x2, y2, z2, ct2) where c
is the speed of light in free space. You will see this in General relativity.

Solution:

(a) The distance is given by

d =

√
(2− 4)2 + (3−−1)2 + (1− 2)2 + (9− 7)2 =

√
22 + 42 + 12 + 22 = 5 (53)

(b) The distance is given by

d =

√
(2−−1)2 + (6− 5)2 + (2−−3)2 + (7− 2)2 + (6− 4)2 =

√
32 + 12 + 52 + 52 + 22 = 8 (54)

(c)

6. For the matrices listed (a)-(d)

i. Find the eigenvalues and eigen vectors

ii. Construct the matrix C that diagonalizes each these matrices and determine its inverse matrix, C−1

iii. Compute C−1MC for each matrices.(this part may be done using Mathematica, in which case appropriate
output must be provided)

iv. Show that the matrices in (b) and (d) are Hermitian.

(a)

M =

[
1 3
2 2

]
, (55)

(b)

M =

(
0 1
1 0

)
,M =

(
0 −i
i 0

)
,M =

(
1 0
0 −1

)
, (56)

These matrices are usually represented as σx, σy, and σz and are known as the Pauli Spin-1/2 matrices that
you will see in quantum mechanics.

(c)

M =

 2 3 0
3 2 0
0 0 1

 (57)

(d)

M =

 0 −i 0
i 0 −i
0 i 0

 (58)

This matrix is also related to spin-matrices (but for spin-1 particles) and you will also see it in quantum
mechanics.

Solution:
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(a) From the eigenvalue equation we find that

∣∣∣∣ 1− ε 3
2 2− ε

∣∣∣∣ = 0⇒ (1− ε) (2− ε)− 6 = 0⇒ ε2 − 3ε− 4 = 0⇒ (ε− 4)(ε+ 1) = 0

⇒ ε1 = 4, ε2 = −1 (59)

For the eigenvectors we must have: [
1− εi 3
2 2− εi

] [
Ai
Bi

]
= 0 (60)

Therefore for ε1 = 4, we have[
−3 3
2 −2

] [
Ai
Bi

]
= 0⇒ 2A1 − 2B1 = 0⇒ A1 = B1 (61)

Therefore

ε1 = A1

[
1
1

]
(62)

and after normalization

ε∗1ε1 = 1⇒ A1 =
1√
2
⇒ ε1 =

1√
2

[
1
1

]
. (63)

For ε2 = −1, we have [
2 3
2 3

] [
Ai
Bi

]
= 0⇒ 2A2 + 3B2 = 0⇒ B2 = −

2

3
A2 (64)

and the eigenvector becomes

ε2 = A2

[
1
− 23

]
⇒ ε2 =

1√
13

[
3
−2

]
(65)

after normalization. Then the matrix C, which must be constructed from the normalized eigen vectors, can be
written as

C =

[
1√
2

3√
13

1√
2

−2√
13

]
(66)

and the inverse matrix (which I determined using Mathematica)

C−1 =

[
2
√
2

5
3
√
2√
13

−
√
13
5

√
13
5

]
(67)

One can easily see that

C−1MC =

[
2
√
2

5
3
√
2√
13

−
√
13
5

√
13
5

] [
1 3
2 2

] [ 1√
2

3√
13

1√
2

−2√
13

]
=

[
4 0
0 −1

]
(68)

which is a diagonal matrix. The diagonal elements are the eigen values. These are checked using Mathematica
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(b) For the matrix the eigen values are

det

∣∣∣∣ −ε 1
1 −ε

∣∣∣∣ = 0⇒ ε2 − 1 = 0⇒ ε1 = 1 and ε2 = −1. (69)

The corresponding eigen vector, for ε1 = 1[
−ε1 1
1 −ε1

] [
A1
B1

]
= 0⇒

[
−1 1
1 −1

] [
A1
B1

]
= 0⇒ A1 = B1 (70)

Therefore the eigenvector can be expressed as

|ε1〉 = A1

(
1
1

)
⇒ |ε1〉 =

1√
2

1
1
, (71)

after normalizing it. Similarly forε2 = −1[
−ε2 1
1 −ε2

] [
A2
B2

]
= 0⇒

[
1 1
1 1

] [
A1
B1

]
= 0⇒ B1 = −A1 ⇒ |ε2〉 =

1√
2

1
−1 . (72)

Then the matrix C, which must be constructed from the normalized eigen vectors, can be written as

C =

[
1√
2

1√
2

1√
2
− 1√

2

]
(73)

and the inverse matrix (which I determined using Mathematica)

C−1 =

[
1√
2

1√
2

1√
2
− 1√

2

]
(74)

One can easily see that

C−1MC =

[
1√
2

1√
2

1√
2
− 1√

2

] [
0 1
1 0

] [ 1√
2

1√
2

1√
2
− 1√

2

]
=

[
1 0
0 −1

]
(75)

which is a diagonal matrix. The diagonal elements are the eigen values. These are checked using Mathematica

10



For the matrix

det

∣∣∣∣ −ε −i
i −ε

∣∣∣∣ = 0⇒ ε2 − 1 = 0⇒ ε1 = 1and ε2 = −1. (76)

The corresponding eigen vector, for ε1 = 1[
−ε1 −i
i −ε1

] [
A1
B1

]
= 0⇒

[
−1 −i
i −1

] [
A1
B1

]
= 0⇒ A1 = −iB1 or iA1 = B1

|ε1〉 = A1

(
1
i

)
⇒ |ε1〉 =

1√
2

1
i
. (77)

Similarly for ε2 = −1 [
−ε1 −i
i −ε1

] [
A1
B1

]
= 0⇒

[
1 −i
i 1

] [
A1
B1

]
= 0

⇒ A1 = iB1 or − iA1 = B1 ⇒ |ε2〉 = A1

(
1
−i

)
⇒ |ε2〉 =

1√
2

(
1
−i

)
. (78)

Then for matrix, C , and its inverse, C−1, we have

C =

[
1√
2

1√
2

i√
2
− i√

2

]
, C−1 =

[
1√
2

−i√
2

1√
2

i√
2

]
(79)

so that

C−1MC =

[
1√
2

−i√
2

1√
2

i√
2

] [
0 −i
i 0

][ 1√
2

1√
2

i√
2
− i√

2

]
=

[
1 0
0 −1

]
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The matrix

M =

(
1 0
0 −1

)
, (80)

is already a diagonal matrix.

(c) For the eigenvalues∣∣∣∣∣∣
2− ε 3 0
3 2− ε 0
0 0 1− ε

∣∣∣∣∣∣ = 0⇒ (2− ε)
∣∣∣∣ 2− ε 0

0 1− ε

∣∣∣∣− 3 ∣∣∣∣ 3 0
0 1− ε

∣∣∣∣ = 0⇒ (ε+ 1)(5− ε)(1− ε) = 0

⇒ ε1 = −1, ε2 = 5, ε3 = 1 (81)

The corresponding eigenvector for ε1 = −1, 2 + 1 3 0
3 2 + 1 0
0 0 1 + 1

 A1
B1
C1

 = 0⇒
 3 3 0
3 3 0
0 0 2

 A1
B1
C1

 = 0
3A1 + 3B1 = 0, 3A1 + 3B1 = 0, 2C1 = 0⇒ C1 = 0, B1 = −A1 ⇒ |ε1〉 = A1

 1
−1
0

⇒ |ε1〉 = 1√
2

 1
−1
0

 .

(82)

For ε2 = 5  2− 5 3 0
3 2− 5 0
0 0 1− 5

 A1
B1
C1

 = 0⇒
 −3 3 0

3 −3 0
0 0 −4

 A1
B1
C1

 = 0
−3A2 + 3B2 = 0, 3A2 − 3B2 = 0,−4C2 = 0⇒ C2 = 0, B2 = A2 ⇒ |ε2〉 = A2

 1
1
0

⇒ |ε2〉 = 1√
2

 1
1
0

 .

(83)

For ε3 = 1, we have  2− 1 3 0
3 2− 1 0
0 0 1− 1

 A3
B3
C3

 = 0
A3 + 3B3 = 0, 3A3 +B3 = 0⇒ A3 = −3B3, 3A3 = −B3 (84)
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The above two equations can be true if, and only if: A3 = B3 = 0. We can choose any value for C3 since the
eigenvalue equation is found to be independent of C3. Therefore, the eigenvector can be rewritten as

|ε3〉 =

 0
0
1

 . (85)

(d) For the matrix

M =

 0 −i 0
i 0 −i
0 i 0

 (86)

the eigenvalues are∣∣∣∣∣∣
−ε −i 0
i −ε −i
0 i −ε

∣∣∣∣∣∣ = 0⇒ −ε
∣∣∣∣ −ε −i
i −ε

∣∣∣∣+ i ∣∣∣∣ i −i
0 −ε

∣∣∣∣ = 0⇒ −ε (ε2 − 1)+ ε = 0
⇒ ε(ε2 − 2) = 0⇒ ε1 = 0, ε2 =

√
2, ε3 = −

√
2 (87)

The eigenvector for ε1 = 0 0 −i 0
i 0 −i
0 i 0

 A1
B1
C1

 = 0⇒ −iB1 = 0, iA1 − iC1 = 0, iB1 = 0⇒ C1 = A1, B1 = 0

⇒ |ε1〉 = A1

 1
0
1

⇒ |ε1〉 = 1√
2

 1
0
1

 . (88)

For ε2 =
√
2 −√2 −i 0

i −
√
2 −i

0 i −
√
2

 A1
B1
C1

 = 0⇒ −√2A1 − iB1 = 0, iA1 −√2B1 − iC1 = 0, iB1 −√2C1 = 0
⇒ B1 = i

√
2A1, iA1 −

√
2i
√
2A1 − iC1 = 0⇒ −iA1 − iC1 = 0⇒ C1 = −A1,

|ε2〉 = A1

 1

i
√
2
−1

⇒ |ε2〉 = 1

2

 1

i
√
2
−1

 . (89)

For ε3 = −
√
2, we have √2 −i 0

i
√
2 −i

0 i
√
2

 A1
B1
C1

 = 0⇒ √2A1 − iB1 = 0, iA1 +√2B1 − iC1 = 0, iB1 +√2C1 = 0
B1 = −i

√
2A1, iA1 −

√
2i
√
2A1 − iC1 = 0⇒ −iA1 − iC1 = 0⇒ C1 = −A1

|ε3〉 = A1

 1

−i
√
2

−1

⇒ |ε3〉 = 1

2

 1

−i
√
2

−1

 . (90)

Using these eigen vectors, one find

C =


1√
2

1
2

1
2

0 i
√
2
2 − i

√
2
2

1√
2
− 12 − 12

 , C−1 =


1√
2

0 1√
2

1
2 − i√

2
− 12

1
2

i√
2
− 12

 (91)

which leads to

C−1MC =


1√
2

0 1√
2

1
2 − i√

2
− 12

1
2

i√
2
− 12


 0 −i 0
i 0 −i
0 i 0




1√
2

1
2

1
2

0 i
√
2
2 − i

√
2
2

1√
2
− 12 − 12

 =
 0 0 0

0
√
2 0

0 0 −
√
2

 (92)
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This is the result from Mathematica.
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