PHYS 3160 HOMEWORK ASSIGNMENT 02

DUE DATE February 10, 2020

Instructor: Dr. Daniel Erenso
Name: \qquad

Mandatory problems: 4, 6 (b) \& (d)
Student signature: \qquad

Comment: \qquad

P \#	1	2	3	4	5	Score
Score	$/$	$/$	$/$	$/$	$/$	$/ 100$

1. In Example 9.4 using the Euler-Lagrange equation we had solved the brachystochrone problem, assuming the "material point" starts from rest, . We did show that in fact the shortest time if defined by an equation of an inverted cycloid

$$
\begin{equation*}
x=\frac{1}{2 c}(\theta-\sin (\theta)), y=-\frac{1}{2 c}(1-\cos (\theta)) \tag{1}
\end{equation*}
$$

Show that when the material point starts with some initial velocity, v_{0}, still the shortest time path is defined by an inverted cycloid.

Solution: If the particle is given an initial velocity $v_{o} \neq 0$, the path of minimum time must be minimum. That means we have to minimize the integral.

$$
\begin{equation*}
I=\int_{1}^{2} d t \tag{2}
\end{equation*}
$$

From conservation of energy we have

$$
\begin{equation*}
\frac{1}{2} m v^{2}-m g y=\frac{1}{2} m v_{o}^{2} \tag{3}
\end{equation*}
$$

where v_{o} is the initial velocity, so that

$$
\begin{equation*}
\frac{1}{2} m v^{2}=\frac{1}{2} m v_{o}^{2}+m g y \Rightarrow v^{2}=v_{o}^{2}+2 g y \Rightarrow v=\sqrt{v_{o}^{2}+2 g y} \tag{4}
\end{equation*}
$$

Recalling that

$$
\begin{gather*}
v=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \Rightarrow v=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} \frac{d y}{d t} \\
\Rightarrow v=\sqrt{1+x^{\prime 2}} \frac{d y}{d t} \tag{5}
\end{gather*}
$$

we may write

$$
\begin{equation*}
\sqrt{1+x^{\prime 2}} \frac{d y}{d t}=\sqrt{v_{o}^{2}+2 g y} \Rightarrow I=\int_{1}^{2} d t=\int_{1}^{2} \frac{\sqrt{1+x^{\prime 2}} d y}{\sqrt{v_{o}^{2}+2 g y}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
x^{\prime}=\frac{d x}{d y} \tag{7}
\end{equation*}
$$

Then the Euler-Lagrnage equation for the above integral becomes

$$
\begin{equation*}
\frac{d}{d y}\left(\frac{d L}{d x^{\prime}}\right)-\frac{d L}{d x}=0 \tag{8}
\end{equation*}
$$

in which

$$
\begin{equation*}
L=\frac{\sqrt{1+x^{\prime 2}}}{\sqrt{v_{o}^{2}+2 g y}} \tag{9}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\frac{d L}{d x}=0, \frac{d L}{d x^{\prime}}=\frac{x^{\prime}}{\sqrt{1+x^{\prime 2}} \sqrt{v_{o}^{2}+2 g y}} \tag{10}
\end{equation*}
$$

we Find

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{x^{\prime}}{\sqrt{1+x^{\prime 2}} \sqrt{v_{o}^{2}+2 g y}}\right]=0 \Rightarrow \frac{x^{\prime}}{\sqrt{1+x^{\prime 2}} \sqrt{v_{o}^{2}+2 g y}}=\sqrt{C} \tag{11}
\end{equation*}
$$

where C is a constant solving for x^{\prime}

$$
\begin{align*}
x^{\prime 2} & =C\left(1+x^{\prime 2}\right)\left(v_{o}^{2}+2 g y\right) \Rightarrow x^{\prime 2}\left[1-C\left(v_{o}^{2}+2 g y\right)\right]=C\left(v_{o}^{2}+2 g y\right) \\
& \Rightarrow x^{\prime}=\frac{\sqrt{C\left(v_{o}^{2}+2 g y\right)}}{\sqrt{1-C\left(v_{o}^{2}+2 g y\right)}} \Rightarrow \int_{y_{1}}^{y} \frac{\sqrt{C\left(v_{o}^{2}+2 g y\right)}}{\sqrt{1-C\left(v_{o}^{2}+2 g y\right)}} d y=\int_{x_{1}}^{x} d x \tag{12}
\end{align*}
$$

Assuming the initial positions are $\left(x_{1}, y_{2}\right)=(0,0)$, we find

$$
\begin{equation*}
x=\int_{0}^{y} \frac{\sqrt{C\left(v_{o}^{2}+2 g y\right)} d y}{\sqrt{1-C\left(v_{o}^{2}+2 g y\right)}} . \tag{13}
\end{equation*}
$$

Introducing the transformation defined by

$$
\begin{equation*}
C\left(v_{o}^{2}+2 g y\right)=\sin ^{2}\left(\frac{\theta}{2}\right)=\frac{1}{2}(1-\cos \theta) \tag{14}
\end{equation*}
$$

we have

$$
\begin{gather*}
\sqrt{1-C\left(v_{o}^{2}+2 g y\right)}=\sqrt{1-\sin ^{2}\left(\frac{\theta}{2}\right)}=\cos \left(\frac{\theta}{2}\right) \\
C 2 g d y=\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) d \theta \Rightarrow d y=\frac{1}{2 c g} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) d \theta \tag{15}
\end{gather*}
$$

so that the above integral becomes

$$
\begin{align*}
x & =\int_{\theta_{o}}^{\theta} \frac{\sin \left(\frac{\theta}{2}\right) \frac{1}{2 c g} \sin \left(\frac{\theta}{2}\right) \frac{\cos \theta}{2} d \theta}{\frac{\cos \theta}{2}} \Rightarrow x=\frac{1}{2 c g} \int_{\theta_{o}}^{\theta} \sin \left(\frac{\theta}{2}\right) d \theta \\
& \Rightarrow x=\frac{1}{2 c g} \int_{\theta_{o}}^{\theta} \frac{1}{2}(1-\cos \theta) d \theta \Rightarrow x=\left.\frac{1}{4 c g}[\theta-\sin \theta]\right|_{\theta_{o}} ^{\theta} \\
& \Rightarrow x=x_{o}+\frac{1}{4 c g}[\theta-\sin \theta] \Rightarrow x-x_{o}=\frac{1}{4 c g}[\theta-\sin \theta], \tag{16}
\end{align*}
$$

where

$$
\begin{equation*}
x_{o}=\frac{1}{4 c g}\left[\theta_{o}-\sin \theta_{o}\right] \tag{17}
\end{equation*}
$$

and θ_{o} is determined from

$$
\begin{equation*}
C\left(v_{o}^{2}+2 g y\right)=\sin ^{2}\left(\frac{\theta}{2}\right)=\frac{1}{2}(1-\cos \theta) \tag{18}
\end{equation*}
$$

for $y=y_{1}=0$, which will be

$$
c v_{o}^{2}=\frac{1}{2}\left(1-\cos \theta_{o}\right) \Rightarrow \cos \theta_{o}=1-2 c v_{o}^{2} \Rightarrow \theta_{o}=\cos ^{-1}\left[1-2 c v_{o}^{2}\right]
$$

Solving for y, we have

$$
\begin{align*}
2 c g y=-c v_{o}^{2}+ & \frac{1}{2}(1-\cos \theta) \Rightarrow y=\frac{-c v_{o}^{2}}{2 c g}+\frac{1}{4 c g}(1-\cos \theta) \\
& \Rightarrow y-y_{o}=\frac{1}{4 c g}(1-\cos \theta) \tag{19}
\end{align*}
$$

where

$$
\begin{equation*}
y_{o}=\frac{c v_{o}^{2}}{2 c g} \tag{20}
\end{equation*}
$$

Therefore the path of minimum time is still a cycloid. The only difference is the center of the cycloid will not be zero if it is given an initial velocity. The center will be $\left(x_{o}, y_{o}\right)$ that depends on the initial velocity

$$
\begin{equation*}
x-x_{o}=\frac{1}{4 c g}[\theta-\sin \theta], y-y_{o}=\frac{1}{4 c g}(1-\cos \theta) . \tag{21}
\end{equation*}
$$

2. Consider the motion of a mass m moving under the influence of a central force (that is, a force acting only along the radial direction) given by

$$
\begin{equation*}
\vec{F}=-f(r) \hat{r} \tag{22}
\end{equation*}
$$

for some function $f(r)$. Assume that the motion is confined to a plane and the position of the mass can be described using polar coordinates (r, φ)

$$
\begin{equation*}
\vec{r}=r \cos (\varphi) \hat{x}+r \sin (\varphi) \hat{y} \tag{23}
\end{equation*}
$$

where $\varphi=0$,as shown in Fig. 1

Figure 1: A mass m under a central force motion confined to the x-y plane.
(a) Find the Lagrangian
(b) Using Euler-Lagrange equation find the equation of motion for the mass for the radial and angular coordinates (i.e. r and φ). Show that one of these equations gives you the law of conservation of angular momentum, \vec{L},

$$
\begin{equation*}
\frac{d \vec{L}}{d t}=I \frac{d \vec{\omega}}{d t}=0 \Rightarrow \vec{L}=I \vec{\omega}=\text { Constant } \tag{24}
\end{equation*}
$$

where $I=m r^{2}$ is the moment of inertia.
(c) For the case in which the radial distance is a constant

$$
\begin{equation*}
\dot{r}=\frac{d r}{d t}=0 \tag{25}
\end{equation*}
$$

you will find the equation of motion for a mass, m, moving in circle

$$
\begin{equation*}
m r \dot{\theta}^{2}=-f(r) \Rightarrow \frac{m(r \dot{\theta})^{2}}{r}=-f(r) \Rightarrow \frac{m v^{2}}{r}=-f(r) \tag{26}
\end{equation*}
$$

Solution:

(a) The kinetic energy

$$
\begin{equation*}
T=\frac{1}{2} m v^{2} \tag{27}
\end{equation*}
$$

Using spherical coordinates $(r, \theta=\pi / 2, \varphi)$ the magnitude of the velocity can be expressed as

$$
\begin{gather*}
\vec{v}=\frac{d \vec{r}}{d t}=\frac{d}{d t}\left[r \sin \left(\frac{\pi}{2}\right) \cos (\varphi) \hat{x}+r \sin \left(\frac{\pi}{2}\right) \sin (\varphi) \hat{y}+r \cos \left(\frac{\pi}{2}\right) \hat{z}\right] \\
\vec{v}=[\dot{r} \cos (\varphi)-r \sin (\varphi)] \hat{x}+[\dot{r} \sin (\varphi)+r \cos (\varphi)] \hat{y} \\
\Rightarrow v^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2} \tag{28}
\end{gather*}
$$

and the kinetic energy becomes

$$
\begin{equation*}
T=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) . \tag{29}
\end{equation*}
$$

(b) The potential energy is related to the central force by

$$
\begin{equation*}
\vec{F}=-\nabla \cdot U(r) \tag{30}
\end{equation*}
$$

where $U(r)$ is the potential energy. Since the force is a central force it is directed along the radial direction and it depends on r only. Therefore the potential energy can be expressed as

$$
\begin{equation*}
U(r)=\int f(r) d r . \tag{31}
\end{equation*}
$$

Then the Lagrangian can be expressed as

$$
\begin{equation*}
L(t, r, \dot{r}, \theta, \dot{\theta})=T-U=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\int f(r) d r \tag{32}
\end{equation*}
$$

Then using the Euler-Lagrange's equation

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right)-\frac{\partial \mathcal{L}}{\partial q_{i}}=0 \tag{33}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\right)-\frac{\partial \mathcal{L}}{\partial \theta}=0, \frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right)-\frac{\partial \mathcal{L}}{\partial r}=0 \tag{34}
\end{equation*}
$$

so that using

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \theta}=0, \frac{\partial \mathcal{L}}{\partial \dot{\theta}}=m r^{2} \dot{\theta}, \frac{\partial \mathcal{L}}{\partial r}=m r \dot{\theta}^{2}-f(r), \frac{\partial \mathcal{L}}{\partial \dot{r}}=m \dot{r} \tag{35}
\end{equation*}
$$

we find

$$
\begin{gather*}
\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\right)=0 \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{\theta}}=\text { const } \Rightarrow m r^{2} \dot{\theta}=\text { cont } \Rightarrow I \omega=\text { cons. (Conservation of Ang. Mom.) } \\
\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right)-\frac{\partial \mathcal{L}}{\partial r}=0 \Rightarrow m \ddot{r}=m r \dot{\theta}^{2}-f(r) \tag{36}
\end{gather*}
$$

(c) For a circular motion where the radius is fixed, $\dot{r}=0$, we find

$$
\begin{equation*}
m r \dot{\theta}^{2}=-f(r) \Rightarrow \frac{m(r \dot{\theta})^{2}}{r}=-f(r) \Rightarrow \frac{m v^{2}}{r}=-f(r), \tag{37}
\end{equation*}
$$

which relates the centripetal acceleration, $a_{c}=v^{2} / r$, that you were introduced in introductory physics.
3. A one-dimensional harmonic oscillator: Consider a mass, m, attached to one end of a spring with spring constant, k, . Find the Lagrangian and the equation of motion for the mass using the Euler-Lagrange equation for the following two cases.
(a) The other end of the spring is attached to a wall as shown in Fig. and the mass is oscillating on a frictionless table.
(b) The other end of the spring is attached to a ceiling as shown in Fig. 3 and the mass is oscillating in a vertical plane.

Solution:

Figure 2: A harmonic oscillator in a horizontal plane.

Figure 3: A harmonic oscillator in a vertical plane.
(a) For a particle moving along the x axis with a potential energy

$$
\begin{equation*}
U=\frac{1}{2} k x^{2} \tag{38}
\end{equation*}
$$

the Lagrangian is given by

$$
\begin{equation*}
L=T-U=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} k x^{2} \tag{39}
\end{equation*}
$$

Then the equation of motion is described by the Euler-Lagrange equation

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{d L}{d \dot{x}}\right)-\frac{d L}{d x}=0 \Rightarrow \frac{d}{d t}(m \dot{x})+k x=0 \Rightarrow m \ddot{x}=-k x \Rightarrow F=m a=-k x \tag{40}
\end{equation*}
$$

(b) In this case we have potential energy and also the motion is in the vertical plane. Thus one can write

$$
\begin{equation*}
U_{e l}=\frac{1}{2} k y^{2}, U_{g}=m g y \tag{41}
\end{equation*}
$$

and for the Lagrangian

$$
\begin{equation*}
L=T-U=\frac{1}{2} m \dot{y}^{2}-\frac{1}{2} k y^{2}-m g y . \tag{42}
\end{equation*}
$$

Then the equation of motion is described by the Euler-Lagrange equation

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{d L}{d \dot{y}}\right)-\frac{d L}{d y}=0 \Rightarrow \frac{d}{d t}(m \dot{y})+k y+m g=0 \Rightarrow m \ddot{y}=-k y-m g \Rightarrow F=m a=k y+m g \tag{43}
\end{equation*}
$$

4. Consider two masses, m_{1} mass m_{2}, connected by a string of length, l, with negligible mass. The string passes through a hole at the center of a table. The mass m_{1} is on the table and it can move on the table. The surface of the table is frictionless. The second mass, m_{2}, hanging from the other end of the string can move up or down on a vertical plane. (see Fig. 4.
(a) Using cylindrical coordinates (r, φ, z), find the Lagrangian
(b) Find the equation of motion for the two masses using Euler-Lagrange equation.

Solution:

Figure 4: Two masses connected by a string of length l. In cylindrical coordinates the position for m_{1} is $(r, \varphi, 0)$ and for m_{2} is $\left(0,0,-z_{2}\right)$. Note that $z_{2}+r=l$.
(a) Using cylindrical coordinates the position of the mass on the table can be written as

$$
\begin{equation*}
\vec{r}_{1}=r \cos (\theta) \hat{x}+r \sin (\theta) \hat{y} \tag{44}
\end{equation*}
$$

and that of the second mass

$$
\begin{equation*}
\vec{r}_{1}=-z \hat{z} \tag{45}
\end{equation*}
$$

were we set the origin at the center of the table. Then Kinetic energy of the two masses can be expressed as

$$
\begin{equation*}
T=\frac{1}{2} m\left[\dot{r}^{2}+(r \dot{\theta})^{2}\right]+\frac{1}{2} m \dot{z}^{2} \tag{46}
\end{equation*}
$$

The potential energy, assume the table is the ground level for gravitational potential energy, is given by

$$
\begin{equation*}
U=-m g z \tag{47}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
r+|z|=l=\text { constant } \Rightarrow \dot{r}=-|\dot{z}| \tag{48}
\end{equation*}
$$

one can write the Lagrangian as

$$
\begin{gather*}
L=T-U=\frac{1}{2} m\left[\dot{r}^{2}+(r \dot{\theta})^{2}\right]+\frac{1}{2} m \dot{z}^{2}+m g z=\frac{1}{2} m\left[\dot{r}^{2}+(r \dot{\theta})^{2}\right]+\frac{1}{2} m \dot{r}^{2}+m g(l-r) \\
\Rightarrow L=\frac{1}{2} m\left[2 \dot{r}^{2}+(r \dot{\theta})^{2}\right]+m g(l-r) \tag{49}
\end{gather*}
$$

(b) Using this Lagrangian, we have

$$
\begin{equation*}
\frac{d L}{d \dot{r}}=2 m \dot{r}, \frac{d L}{d r}=m r \dot{\theta}^{2}-m g, \frac{d L}{d \dot{\theta}}=m r^{2} \dot{\theta}, \frac{d L}{d \theta}=0 \tag{50}
\end{equation*}
$$

so that for the equations of motion, given by

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{d L}{d \dot{r}}\right)-\frac{d L}{d r}=0, \frac{d}{d t}\left(\frac{d L}{d \dot{\theta}}\right)-\frac{d L}{d \theta}=0 \tag{51}
\end{equation*}
$$

one finds

$$
\begin{align*}
\frac{d}{d t}(2 m \dot{r})-m r \dot{\theta}^{2}-m g & =0 \Rightarrow \ddot{r}=\frac{1}{2}\left(g-r \dot{\theta}^{2}\right) \\
\frac{d}{d t}\left(m r^{2} \dot{\theta}\right) & =0 \Rightarrow m r^{2} \dot{\theta}=\mathrm{constant} \tag{52}
\end{align*}
$$

5. Find the magnitude of the vector pointing from point P to point Q, when these points are
(a) $P=(4,-1,2,7)$ and $Q=(2,3,1,9)$.
(b) $P=(-1,5,-3,2,4)$ and $Q=(2,6,2,7,6)$.
(c) Points described by the Minkowski space-time coordinates, $P=\left(x_{1}, y_{1}, z_{1}, c t_{1}\right)$ and $P=\left(x_{2}, y_{2}, z_{2}\right.$, ct $\left.t_{2}\right)$ where c is the speed of light in free space. You will see this in General relativity.

Solution:

(a) The distance is given by

$$
\begin{equation*}
d=\sqrt{(2-4)^{2}+(3--1)^{2}+(1-2)^{2}+(9-7)^{2}}=\sqrt{2^{2}+4^{2}+1^{2}+2^{2}}=5 \tag{53}
\end{equation*}
$$

(b) The distance is given by

$$
\begin{equation*}
d=\sqrt{(2--1)^{2}+(6-5)^{2}+(2--3)^{2}+(7-2)^{2}+(6-4)^{2}}=\sqrt{3^{2}+1^{2}+5^{2}+5^{2}+2^{2}}=8 \tag{54}
\end{equation*}
$$

(c)
6. For the matrices listed (a)-(d)
i. Find the eigenvalues and eigen vectors
ii. Construct the matrix C that diagonalizes each these matrices and determine its inverse matrix, C^{-1}
iii. Compute $C^{-1} M C$ for each matrices.(this part may be done using Mathematica, in which case appropriate output must be provided)
iv. Show that the matrices in (b) and (d) are Hermitian.
(a)

$$
M=\left[\begin{array}{ll}
1 & 3 \tag{55}\\
2 & 2
\end{array}\right]
$$

(b)

$$
M=\left(\begin{array}{cc}
0 & 1 \tag{56}\\
1 & 0
\end{array}\right), M=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), M=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

These matrices are usually represented as σ_{x}, σ_{y}, and σ_{z} and are known as the Pauli Spin-1/2 matrices that you will see in quantum mechanics.
(c)

$$
M=\left[\begin{array}{lll}
2 & 3 & 0 \tag{57}\\
3 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(d)

$$
M=\left(\begin{array}{ccc}
0 & -i & 0 \tag{58}\\
i & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

This matrix is also related to spin-matrices (but for spin-1 particles) and you will also see it in quantum mechanics.

Solution:

(a) From the eigenvalue equation we find that

$$
\begin{gather*}
\left|\begin{array}{cc}
1-\epsilon & 3 \\
2 & 2-\epsilon
\end{array}\right|=0 \Rightarrow(1-\epsilon)(2-\epsilon)-6=0 \Rightarrow \epsilon^{2}-3 \epsilon-4=0 \Rightarrow(\epsilon-4)(\epsilon+1)=0 \\
\Rightarrow \epsilon_{1}=4, \epsilon_{2}=-1 \tag{59}
\end{gather*}
$$

For the eigenvectors we must have:

$$
\left[\begin{array}{cc}
1-\epsilon_{i} & 3 \tag{60}\\
2 & 2-\epsilon_{i}
\end{array}\right]\left[\begin{array}{l}
A_{i} \\
B_{i}
\end{array}\right]=0
$$

Therefore for $\epsilon_{1}=4$, we have

$$
\left[\begin{array}{cc}
-3 & 3 \tag{61}\\
2 & -2
\end{array}\right]\left[\begin{array}{c}
A_{i} \\
B_{i}
\end{array}\right]=0 \Rightarrow 2 A_{1}-2 B_{1}=0 \Rightarrow A_{1}=B_{1}
$$

Therefore

$$
\epsilon_{1}=A_{1}\left[\begin{array}{l}
1 \tag{62}\\
1
\end{array}\right]
$$

and after normalization

$$
\epsilon_{1}^{*} \epsilon_{1}=1 \Rightarrow A_{1}=\frac{1}{\sqrt{2}} \Rightarrow \epsilon_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \tag{63}\\
1
\end{array}\right]
$$

For $\epsilon_{2}=-1$, we have

$$
\left[\begin{array}{ll}
2 & 3 \tag{64}\\
2 & 3
\end{array}\right]\left[\begin{array}{l}
A_{i} \\
B_{i}
\end{array}\right]=0 \Rightarrow 2 A_{2}+3 B_{2}=0 \Rightarrow B_{2}=-\frac{2}{3} A_{2}
$$

and the eigenvector becomes

$$
\epsilon_{2}=A_{2}\left[\begin{array}{c}
1 \tag{65}\\
-\frac{2}{3}
\end{array}\right] \Rightarrow \epsilon_{2}=\frac{1}{\sqrt{13}}\left[\begin{array}{c}
3 \\
-2
\end{array}\right]
$$

after normalization. Then the matrix C, which must be constructed from the normalized eigen vectors, can be written as

$$
C=\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{3}{\sqrt{13}} \tag{66}\\
\frac{1}{\sqrt{2}} & \frac{-2}{\sqrt{13}}
\end{array}\right]
$$

and the inverse matrix (which I determined using Mathematica)

$$
C^{-1}=\left[\begin{array}{cc}
\frac{2 \sqrt{2}}{5} & \frac{3 \sqrt{2}}{\sqrt{13}} \tag{67}\\
-\frac{\sqrt{13}}{5} & \frac{\sqrt{13}}{5}
\end{array}\right]
$$

One can easily see that

$$
C^{-1} M C=\left[\begin{array}{cc}
\frac{2 \sqrt{2}}{5} & \frac{3 \sqrt{2}}{\sqrt{13}} \tag{68}\\
-\frac{\sqrt{13}}{5} & \frac{\sqrt{13}}{5}
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{3}{\sqrt{13}} \\
\frac{1}{\sqrt{2}} & \frac{-2}{\sqrt{13}}
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right]
$$

which is a diagonal matrix. The diagonal elements are the eigen values. These are checked using Mathematica

$$
\ln [5]=\text { Simplify }\left[\text { Inverse }\left[\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-3}{\sqrt{13}} \\
\frac{1}{\sqrt{2}} & \frac{2}{\sqrt{13}}
\end{array}\right)\right] / / \text { MatrixForm }\right]
$$

Out[5]/MatrixForm=

$$
\left(\begin{array}{cc}
\frac{2 \sqrt{2}}{5} & \frac{3 \sqrt{2}}{5} \\
-\frac{\sqrt{13}}{5} & \frac{\sqrt{13}}{5}
\end{array}\right)
$$

$$
\ln [0]:=\operatorname{Simplify}\left[\text { Inverse }\left[\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-3}{\sqrt{13}} \\
\frac{1}{\sqrt{2}} & \frac{2}{\sqrt{13}}
\end{array}\right)\right] \cdot\left(\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-3}{\sqrt{13}} \\
\frac{1}{\sqrt{2}} & \frac{2}{\sqrt{13}}
\end{array}\right)\right] / / \text { MatrixForm }
$$

Out[By/MatrixForm $=$

$$
\left(\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right)
$$

$\ln [7]:=$ Eigensystem $\left.\left[\left(\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right)\right] \right\rvert\,$
$\operatorname{Out}[7]=(\{4,-1\},\{(1,1\},\{-3,2\}\}\}$
(b) For the matrix the eigen values are

$$
\operatorname{det}\left|\begin{array}{cc}
-\epsilon & 1 \tag{69}\\
1 & -\epsilon
\end{array}\right|=0 \Rightarrow \epsilon^{2}-1=0 \Rightarrow \epsilon_{1}=1 \text { and } \epsilon_{2}=-1
$$

The corresponding eigen vector, for $\epsilon_{1}=1$

$$
\left[\begin{array}{cc}
-\epsilon_{1} & 1 \tag{70}\\
1 & -\epsilon_{1}
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=0 \Rightarrow\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=0 \Rightarrow A_{1}=B_{1}
$$

Therefore the eigenvector can be expressed as

$$
\begin{equation*}
\left|\epsilon_{1}\right\rangle=A_{1}\binom{1}{1} \Rightarrow\left|\epsilon_{1}\right\rangle=\frac{1}{\sqrt{2}} 1 \tag{71}
\end{equation*}
$$

after normalizing it. Similarly for $\epsilon_{2}=-1$

$$
\left[\begin{array}{cc}
-\epsilon_{2} & 1 \tag{72}\\
1 & -\epsilon_{2}
\end{array}\right]\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right]=0 \Rightarrow\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=0 \Rightarrow B_{1}=-A_{1} \Rightarrow\left|\epsilon_{2}\right\rangle=\frac{1}{\sqrt{2}}-1
$$

Then the matrix C, which must be constructed from the normalized eigen vectors, can be written as

$$
C=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \tag{73}\\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

and the inverse matrix (which I determined using Mathematica)

$$
C^{-1}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \tag{74}\\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

One can easily see that

$$
C^{-1} M C=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \tag{75}\\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

which is a diagonal matrix. The diagonal elements are the eigen values. These are checked using Mathematica

$$
\ln [12]:=\text { Simplify }\left[\text { Inverse }\left[\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\right] / / \text { MatrixForm }\right]
$$

Out[12]/MatrixForm=

$$
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

$\ln [13]=$ Simplify $\left[\right.$ Inverse $\left.\left[\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right)\right] \cdot\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \cdot\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right)\right] / /$ MatrixForm
Out[13y/MatrocForm=
$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
$\ln [14]:=\operatorname{Eigensystem}\left[\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right]$
$\operatorname{Out}[14]=\{\{-1,1\},\{\{-1,1\},\{1,1\}\}\}$
For the matrix

$$
\operatorname{det}\left|\begin{array}{cc}
-\epsilon & -i \tag{76}\\
i & -\epsilon
\end{array}\right|=0 \Rightarrow \epsilon^{2}-1=0 \Rightarrow \epsilon_{1}=1 \text { and } \epsilon_{2}=-1
$$

The corresponding eigen vector, for $\epsilon_{1}=1$

$$
\begin{align*}
{\left[\begin{array}{cc}
-\epsilon_{1} & -i \\
i & -\epsilon_{1}
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right] } & =0 \Rightarrow\left[\begin{array}{cc}
-1 & -i \\
i & -1
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=0 \Rightarrow A_{1}=-i B_{1} \text { or } i A_{1}=B_{1} \\
\left|\epsilon_{1}\right\rangle & =A_{1}\binom{1}{i} \Rightarrow\left|\epsilon_{1}\right\rangle=\frac{1}{\sqrt{2}} i \tag{77}
\end{align*}
$$

Similarly for $\epsilon_{2}=-1$

$$
\begin{gather*}
{\left[\begin{array}{cc}
-\epsilon_{1} & -i \\
i & -\epsilon_{1}
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=0 \Rightarrow\left[\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=0} \\
\Rightarrow A_{1}=i B_{1} \text { or }-i A_{1}=B_{1} \Rightarrow\left|\epsilon_{2}\right\rangle=A_{1}\binom{1}{-i} \Rightarrow\left|\epsilon_{2}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{-i} . \tag{78}
\end{gather*}
$$

Then for matrix, C, and its inverse, C^{-1}, we have

$$
C=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \tag{79}\\
\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right], C^{-1}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right]
$$

so that

$$
C^{-1} M C=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

$$
\begin{aligned}
& \ln [16]=\text { Simplify }\left[\text { Inverse }\left[\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}}
\end{array}\right)\right] / / \text { MatrixForm }\right] \\
& \text { Out[16]/MatrixForm= } \\
& \qquad\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
& \ln [17]=\text { Simplify }\left[\text { Inverse }\left[\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}}
\end{array}\right)\right] \cdot\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}}
\end{array}\right)\right] / / \text { MatrixForm } \\
& \text { Out[17]/MatrixForm= } \\
& \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$


```
Out[18}= ({-1, 1}, ({i, 1}, {-i, 1})}
```

The matrix

$$
M=\left(\begin{array}{cc}
1 & 0 \tag{80}\\
0 & -1
\end{array}\right)
$$

is already a diagonal matrix.
(c) For the eigenvalues

$$
\begin{gather*}
\left|\begin{array}{ccc}
2-\epsilon & 3 & 0 \\
3 & 2-\epsilon & 0 \\
0 & 0 & 1-\epsilon
\end{array}\right|=0 \Rightarrow(2-\epsilon)\left|\begin{array}{cc}
2-\epsilon & 0 \\
0 & 1-\epsilon
\end{array}\right|-3\left|\begin{array}{cc}
3 & 0 \\
0 & 1-\epsilon
\end{array}\right|=0 \Rightarrow(\epsilon+1)(5-\epsilon)(1-\epsilon)=0 \\
\Rightarrow \epsilon_{1}=-1, \epsilon_{2}=5, \epsilon_{3}=1 \tag{81}
\end{gather*}
$$

The corresponding eigenvector for $\epsilon_{1}=-1$,

$$
\begin{gather*}
{\left[\begin{array}{ccc}
2+1 & 3 & 0 \\
3 & 2+1 & 0 \\
0 & 0 & 1+1
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1} \\
C_{1}
\end{array}\right]=0 \Rightarrow\left[\begin{array}{lll}
3 & 3 & 0 \\
3 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
B_{1} \\
C_{1}
\end{array}\right]=0} \\
3 A_{1}+3 B_{1}=0,3 A_{1}+3 B_{1}=0,2 C_{1}=0 \Rightarrow C_{1}=0, B_{1}=-A_{1} \Rightarrow\left|\epsilon_{1}\right\rangle=A_{1}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \Rightarrow\left|\epsilon_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) . \tag{82}
\end{gather*}
$$

For $\epsilon_{2}=5$

$$
\begin{gather*}
{\left[\begin{array}{ccc}
2-5 & 3 & 0 \\
3 & 2-5 & 0 \\
0 & 0 & 1-5
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1} \\
C_{1}
\end{array}\right]=0 \Rightarrow\left[\begin{array}{ccc}
-3 & 3 & 0 \\
3 & -3 & 0 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1} \\
C_{1}
\end{array}\right]=0} \\
-3 A_{2}+3 B_{2}=0,3 A_{2}-3 B_{2}=0,-4 C_{2}=0 \Rightarrow C_{2}=0, B_{2}=A_{2} \Rightarrow\left|\epsilon_{2}\right\rangle=A_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \Rightarrow\left|\epsilon_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) . \tag{83}
\end{gather*}
$$

For $\epsilon_{3}=1$, we have

$$
\begin{gather*}
{\left[\begin{array}{ccc}
2-1 & 3 & 0 \\
3 & 2-1 & 0 \\
0 & 0 & 1-1
\end{array}\right]\left[\begin{array}{l}
A_{3} \\
B_{3} \\
C_{3}
\end{array}\right]=0} \\
A_{3}+3 B_{3}=0,3 A_{3}+B_{3}=0 \Rightarrow A_{3}=-3 B_{3}, 3 A_{3}=-B_{3} \tag{84}
\end{gather*}
$$

The above two equations can be true if, and only if: $A_{3}=B_{3}=0$. We can choose any value for C_{3} since the eigenvalue equation is found to be independent of C_{3}. Therefore, the eigenvector can be rewritten as

$$
\left|\epsilon_{3}\right\rangle=\left(\begin{array}{l}
0 \tag{85}\\
0 \\
1
\end{array}\right)
$$

(d) For the matrix

$$
M=\left(\begin{array}{ccc}
0 & -i & 0 \tag{86}\\
i & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

the eigenvalues are

$$
\begin{align*}
\left|\begin{array}{ccc}
-\epsilon & -i & 0 \\
i & -\epsilon & -i \\
0 & i & -\epsilon
\end{array}\right| & =0 \Rightarrow-\epsilon\left|\begin{array}{cc}
-\epsilon & -i \\
i & -\epsilon
\end{array}\right|+i\left|\begin{array}{cc}
i & -i \\
0 & -\epsilon
\end{array}\right|=0 \Rightarrow-\epsilon\left(\epsilon^{2}-1\right)+\epsilon=0 \\
& \Rightarrow \epsilon\left(\epsilon^{2}-2\right)=0 \Rightarrow \epsilon_{1}=0, \epsilon_{2}=\sqrt{2}, \epsilon_{3}=-\sqrt{2} \tag{87}
\end{align*}
$$

The eigenvector for $\epsilon_{1}=0$

$$
\begin{align*}
{\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
B_{1} \\
C_{1}
\end{array}\right] } & =0 \Rightarrow-i B_{1}=0, i A_{1}-i C_{1}=0, i B_{1}=0 \Rightarrow C_{1}=A_{1}, B_{1}=0 \\
& \Rightarrow\left|\epsilon_{1}\right\rangle=A_{1}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \Rightarrow\left|\epsilon_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \tag{88}
\end{align*}
$$

For $\epsilon_{2}=\sqrt{2}$

$$
\begin{gather*}
{\left[\begin{array}{ccc}
-\sqrt{2} & -i & 0 \\
i & -\sqrt{2} & -i \\
0 & i & -\sqrt{2}
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
B_{1} \\
C_{1}
\end{array}\right]=0 \Rightarrow-\sqrt{2} A_{1}-i B_{1}=0, i A_{1}-\sqrt{2} B_{1}-i C_{1}=0, i B_{1}-\sqrt{2} C_{1}=0} \\
\Rightarrow B_{1}=i \sqrt{2} A_{1}, i A_{1}-\sqrt{2} i \sqrt{2} A_{1}-i C_{1}=0 \Rightarrow-i A_{1}-i C_{1}=0 \Rightarrow C_{1}=-A_{1} \\
\left|\epsilon_{2}\right\rangle=A_{1}\left(\begin{array}{c}
1 \\
i \sqrt{2} \\
-1
\end{array}\right) \Rightarrow\left|\epsilon_{2}\right\rangle=\frac{1}{2}\left(\begin{array}{c}
1 \\
i \sqrt{2} \\
-1
\end{array}\right) \tag{89}
\end{gather*}
$$

For $\epsilon_{3}=-\sqrt{2}$, we have

$$
\begin{gather*}
{\left[\begin{array}{ccc}
\sqrt{2} & -i & 0 \\
i & \sqrt{2} & -i \\
0 & i & \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1} \\
C_{1}
\end{array}\right]=0 \Rightarrow \sqrt{2} A_{1}-i B_{1}=0, i A_{1}+\sqrt{2} B_{1}-i C_{1}=0, i B_{1}+\sqrt{2} C_{1}=0} \\
B_{1}=-i \sqrt{2} A_{1}, i A_{1}-\sqrt{2} i \sqrt{2} A_{1}-i C_{1}=0 \Rightarrow-i A_{1}-i C_{1}=0 \Rightarrow C_{1}=-A_{1} \\
\left|\epsilon_{3}\right\rangle=A_{1}\left(\begin{array}{c}
1 \\
-i \sqrt{2} \\
-1
\end{array}\right) \Rightarrow\left|\epsilon_{3}\right\rangle=\frac{1}{2}\left(\begin{array}{c}
1 \\
-i \sqrt{2} \\
-1
\end{array}\right) \tag{90}
\end{gather*}
$$

Using these eigen vectors, one find

$$
C=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \tag{91}\\
0 & \frac{i \sqrt{2}}{2} & -\frac{i \sqrt{2}}{2} \\
\frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right], C^{-1}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{2} & -\frac{i}{\sqrt{2}} & -\frac{1}{2} \\
\frac{1}{2} & \frac{i}{\sqrt{2}} & -\frac{1}{2}
\end{array}\right]
$$

which leads to

$$
C^{-1} M C=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \tag{92}\\
\frac{1}{2} & -\frac{i}{\sqrt{2}} & -\frac{1}{2} \\
\frac{1}{2} & \frac{i}{\sqrt{2}} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{i \sqrt{2}}{2} & -\frac{i \sqrt{2}}{2} \\
\frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & -\sqrt{2}
\end{array}\right]
$$

This is the result from Mathematica.

```
In[20]= MatrixForm[{{0,-i, 0},{i,0,-i}},{0,i,0}}]
    (ccc}
    |n[2g]= Simplify[Inverse[([ ccc}\frac{1}{\sqrt{}{2}
Out[29/MatrixFom= 
    In[{0] = Simplify[Inverse [( [cc}\begin{array}{ccc}{\frac{1}{\sqrt{}{2}}}&{\frac{1}{2}}&{\frac{1}{2}}\\{0}&{\frac{i\sqrt{}{2}}{2}}&{\frac{-i\sqrt{}{2}}{2}}\\{\frac{1}{\sqrt{}{2}}}&{-\frac{1}{2}}&{-\frac{1}{2}}\end{array})]\cdot(\begin{array}{ccc}{0}&{-i}&{0}\\{i}&{0}&{-i}\\{0}&{i}&{0}\end{array})\cdot(\begin{array}{cccc}{\frac{1}{\sqrt{}{2}}}&{\frac{1}{2}}&{\frac{1}{2}}\\{0}&{\frac{i\sqrt{}{2}}{2}}&{\frac{-i\sqrt{}{2}}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}&{-\frac{1}{2}}\end{array})]//\mathrm{ MatrixForm
```



```
ln[3]]=Eigensystem[([0-icc
Out[3]={{{-\sqrt{}{2},\sqrt{}{2},0},{{{-1, i\sqrt{}{2},1},{-1,-i\sqrt{}{2},1},(1,0,1}}}
```

