PHYS 3160 HOMEWORK ASSIGNMENT 02

DUE DATE February 10, 2020

Instructor: Dr. Daniel Erenso
Name: \qquad

Mandatory problems: 4, 6 (b) \& (d)
Student signature: \qquad

Comment: \qquad

P \#	1	2	3	4	5	Score
Score	$/$	$/$	$/$	$/$	$/$	$/ 100$

1. In Example 9.4 using the Euler-Lagrange equation we had solved the brachystochrone problem, assuming the "material point" starts from rest, . We did show that in fact the shortest time if defined by an equation of an inverted cycloid

$$
\begin{equation*}
x=\frac{1}{2 c}(\theta-\sin (\theta)), y=-\frac{1}{2 c}(1-\cos (\theta)) \tag{1}
\end{equation*}
$$

Show that when the material point starts with some initial velocity, v_{0}, still the shortest time path is defined by an inverted cycloid.
2. Consider the motion of a mass m moving under the influence of a central force (that is, a force acting only along the radial direction) given by

$$
\begin{equation*}
\vec{F}=-f(r) \hat{r} \tag{2}
\end{equation*}
$$

for some function $f(r)$. Assume that the motion is confined to a plane and the position of the mass can be described using polar coordinates (r, φ)

$$
\begin{equation*}
\vec{r}=r \cos (\varphi) \hat{x}+r \sin (\varphi) \hat{y} \tag{3}
\end{equation*}
$$

where $\varphi=0$,as shown in Fig. 1

Figure 1: A mass m under a central force motion confined to the $x-y$ plane.
(a) Find the Lagrangian
(b) Using Euler-Lagrange equation find the equation of motion for the mass for the radial and angular coordinates (i.e. r and φ). Show that one of these equations gives you the law of conservation of angular momentum, \vec{L},

$$
\begin{equation*}
\frac{d \vec{L}}{d t}=I \frac{d \vec{\omega}}{d t}=0 \Rightarrow \vec{L}=I \vec{\omega}=\text { Constant } \tag{4}
\end{equation*}
$$

where $I=m r^{2}$ is the moment of inertia.
(c) For the case in which the radial distance is a constant

$$
\begin{equation*}
\dot{r}=\frac{d r}{d t}=0 \tag{5}
\end{equation*}
$$

you will find the equation of motion for a mass, m, moving in circle

$$
\begin{equation*}
m r \dot{\theta}^{2}=-f(r) \Rightarrow \frac{m(r \dot{\theta})^{2}}{r}=-f(r) \Rightarrow \frac{m v^{2}}{r}=-f(r) \tag{6}
\end{equation*}
$$

Figure 2: A harmonic oscillator in a horizontal plane.
3. A one-dimensional harmonic oscillator: Consider a mass, m, attached to one end of a spring with spring constant, k,. Find the Lagrangian and the equation of motion for the mass using the Euler-Lagrange equation for the following two cases.
(a) The other end of the spring is attached to a wall as shown in Fig. and the mass is oscillating on a frictionless table.
(b) The other end of the spring is attached to a ceiling as shown in Fig. 3 and the mass is oscillating in a vertical plane.

Figure 3: A harmonic oscillator in a vertical plane.
4. Consider two masses, m_{1} mass m_{2}, connected by a string of length, l, with negligible mass. The string passes through a hole at the center of a table. The mass m_{1} is on the table and it can move on the table. The surface of the table is frictionless. The second mass, m_{2}, hanging from the other end of the string can move up or down on a vertical plane. (see Fig. 4.

Figure 4: Two masses connected by a string of length l. In cylindrical coordinates the position for m_{1} is $(r, \varphi, 0)$ and for m_{2} is $\left(0,0,-z_{2}\right)$. Note that $z_{2}+r=l$.
(a) Using cylindrical coordinates (r, φ, z), find the Lagrangian
(b) Find the equation of motion for the two masses using Euler-Lagrange equation.
5. Find the magnitude of the vector pointing from point P to point Q, when these points are
(a) $P=(4,-1,2,7)$ and $Q=(2,3,1,9)$.
(b) $P=(-1,5,-3,2,4)$ and $Q=(2,6,2,7,6)$.
(c) Points described by the Minkowski space-time coordinates, $P=\left(x_{1}, y_{1}, z_{1}, c t_{1}\right)$ and $P=\left(x_{2}, y_{2}, z_{2}, c t_{2}\right)$ where c is the speed of light in free space. You will see this in General relativity.
6. For the matrices listed (a)-(d)
i. Find the eigenvalues and eigen vectors
ii. Construct the matrix C that diagonalizes each these matrices and determine its inverse matrix, C^{-1}
iii. Compute $C^{-1} M C$ for each matrices.(this part may be done using Mathematica, in which case appropriate output must be provided)
iv. Show that the matrices in (b) and (d) are Hermitian.
(a)

$$
M=\left[\begin{array}{ll}
1 & 3 \tag{7}\\
2 & 2
\end{array}\right]
$$

(b)

$$
M=\left(\begin{array}{cc}
0 & 1 \tag{8}\\
1 & 0
\end{array}\right), M=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), M=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

These matrices are usually represented as σ_{x}, σ_{y}, and σ_{z} and are known as the Pauli Spin-1/2 matrices that you will see in quantum mechanics.
(c)

$$
M=\left[\begin{array}{lll}
2 & 3 & 0 \tag{9}\\
3 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(d)

$$
M=\left(\begin{array}{ccc}
0 & -i & 0 \tag{10}\\
i & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

This matrix is also related to spin-matrices (but for spin-1 particles) and you will also see it in quantum mechanics.

