PHYS 3160 HOMEWORK ASSIGNMENT 03
 DUE DATE FEBRUARY 17, 2020

Instructor: Dr. Daniel Erenso
Name: \qquad

Mandatory problems: 1 \& 3
Student signature: \qquad

Comment: \qquad

$\mathrm{P} \#$	1	2	3	4	5	Score
Score	$/$	$/$	$/$	$/$	$/$	$/ 100$

1. Consider a system consisting of two masses m_{1} and m_{2} connected by three three springs with spring constant k_{1}, k_{2}, and k_{2} as shown in Fig. 1.The masses can slide on a horizontal, frictionless surface. The springs are at

Figure 1: Two masses and three different springs.
their unstretched/uncompressed lengths when the masses are at its equilibrium positions. At $t=0$, the masses are displaced from its equilibrium positions by the amounts x_{10} and x_{20} and released from rest.
(a) Find the kinetic energy, the potential energy, and the Lagrangian. Using the Euler-Lagrange equation derive the equations of motion for each masses and express the equations using matrices

$$
\left[\begin{array}{l}
\ddot{x}_{1} \tag{1}\\
\ddot{x}_{2}
\end{array}\right]=M\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

(b) Let's assume that two atoms have nearly the same mass (i.e. $m_{1} \simeq m_{2}=m$) and,

$$
\begin{equation*}
k_{1}=5 k, k_{2}=2 k, k_{3}=2 k \tag{2}
\end{equation*}
$$

Using Similarity Transformation find the Eigenvalues and Eigenvectors for the matrix M.
(c) For the two masses find the displacements $\left(x_{1}(t)\right.$ and $\left.x_{2}(t)\right)$ and speeds $\left(\dot{x}_{1}(t)\right.$ and $\left.\dot{x}_{2}(t)\right)$
(d) Find the propagator matrix.
(e) Describe the Normal Modes of Vibration of the atoms.

Solution:

(a) The kinetic energy can be expressed as

$$
\begin{equation*}
T=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2} \tag{3}
\end{equation*}
$$

The elastic potential energy is given by

$$
\begin{equation*}
U=\frac{1}{2}\left[k_{1} x_{1}^{2}+k_{3} x_{2}^{2}+k_{2}\left(x_{1}-x_{2}\right)^{2}\right] \tag{4}
\end{equation*}
$$

Then the Lagrangian

$$
\begin{equation*}
L=T-U \tag{5}
\end{equation*}
$$

becomes

$$
\begin{equation*}
L=\frac{1}{2}\left(m_{1} \dot{x}_{1}^{2}+m_{2} \dot{x}_{2}^{2}\right)-\frac{1}{2}\left[k_{1} x_{1}^{2}+k_{3} x_{2}^{2}+k_{2}\left(x_{1}-x_{2}\right)^{2}\right] . \tag{6}
\end{equation*}
$$

The equations of motion, using Euler-Lagrange's equation,

$$
\begin{equation*}
\frac{d}{d f}\left(\frac{d L}{d \dot{q}_{i}}\right)-\frac{d L}{d q_{i}}=0 \tag{7}
\end{equation*}
$$

can be written as

$$
\begin{align*}
& m_{1} \ddot{x}_{1}=-k_{1} x_{1}-k_{2}\left(x_{1}-x_{2}\right) \Rightarrow \ddot{x}_{1}=-\left(\frac{k_{2}+k_{1}}{m_{1}}\right) x_{1}+\frac{k_{2}}{m_{1}} y \\
& m_{2} \ddot{x}_{2}=-k_{3} x_{2}+k_{2}\left(x_{1}-x_{2}\right) \Rightarrow \ddot{x}_{2}=\frac{k_{2}}{m_{2}} x_{1}-\left(\frac{k_{2}+k_{3}}{m_{2}}\right) x_{2} \tag{8}
\end{align*}
$$

In a matrix from this can be put in the form

$$
\left[\begin{array}{cc}
-\frac{k_{2}+k_{1}}{m_{1}} & \frac{k_{2}}{m_{1}} \tag{9}\\
\frac{k_{2}}{m_{2}} & -\frac{k_{2}+k_{3}}{m_{2}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{d^{2}}{d t^{2}}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Rightarrow M\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{d^{2}}{d t^{2}}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

where

$$
M=\left[\begin{array}{cc}
-\frac{k_{2}+k_{1}}{m_{1}} & \frac{k_{2}}{m_{1}} \tag{10}\\
\frac{k_{2}}{m_{2}} & -\frac{k_{2}+k_{3}}{m_{2}}
\end{array}\right] .
$$

(b) For the case $m_{1} \simeq m_{2}=m$ and $k_{1}=5 k, k_{2}=2 k, k_{3}=2 k$, the matrix in part (a) becomes

$$
M=\left[\begin{array}{cc}
-\frac{7 k}{m} & \frac{2 k}{m} \\
\frac{2 k}{m} & -\frac{4 k}{m}
\end{array}\right]
$$

The equation of motion

$$
\frac{d^{2}}{d t^{2}}\left[\begin{array}{l}
x_{1} \tag{11}\\
x_{2}
\end{array}\right]=M\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

can be re-written as

$$
\begin{equation*}
\ddot{\vec{r}}=M \vec{r} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{r}=x_{1} \hat{e}_{1}+x_{1} \hat{e}_{2} \Rightarrow \ddot{\vec{r}}=\ddot{x}_{1} \hat{e}_{1}+\ddot{x}_{1} \hat{e}_{2}, \hat{e}_{1}=\binom{1}{0}, \hat{e}_{2}=\binom{0}{1} . \tag{13}
\end{equation*}
$$

We recall that for a matrix M the similarity transformation is given by

$$
\begin{equation*}
D=T^{-1} M T \tag{14}
\end{equation*}
$$

where T is a matrix whose columns are the eigenvectors and the matrix D is a diagonal matrix where the elements are the eigenvalues to the Eigenvalue equation for matrix M. Suppose if we can find eigenvectors \vec{R} such that

$$
\begin{equation*}
M \vec{R}=\lambda \vec{R} \tag{15}
\end{equation*}
$$

then the eigenvalue equation can be written as

$$
\operatorname{det}\left|\begin{array}{cc}
-\frac{7 k}{m}-\lambda & \frac{2 k}{m} \tag{16}\\
\frac{2 k}{m} & -\frac{4 k}{m}-\lambda
\end{array}\right|=0 \Rightarrow \lambda^{2}+11 \frac{k}{m} \lambda+24 \frac{k^{2}}{m^{2}}=0
$$

and the eigenvalues become

$$
\begin{equation*}
\lambda_{1}=-\frac{3 k}{m}, \lambda_{2}=-\frac{8 k}{m} \tag{17}
\end{equation*}
$$

The corresponding eigenvectors are obtained using

$$
\left[\begin{array}{cc}
-\frac{7 k}{m}-\lambda_{i} & \frac{2 k}{m} \tag{18}\\
\frac{2 k}{m} & -\frac{4 k}{m}-\lambda_{i}
\end{array}\right]\left[\begin{array}{c}
A_{i} \\
B_{i}
\end{array}\right]=0
$$

For $\lambda_{1}=-\frac{3 k}{m}$, we find

$$
\begin{gather*}
{\left[\begin{array}{cc}
-\frac{7 k}{m}+\frac{3 k}{m} & \frac{2 k}{\frac{2 k}{m}} \\
\frac{2 k}{m} & -\frac{4 k}{m}+\frac{3 k}{m}
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
B_{1}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{4 k}{m} & \frac{2 k}{m} \\
\frac{2 k}{m} & -\frac{k}{m}
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
B_{1}
\end{array}\right]=0} \\
B_{1}=2 A_{1} \tag{19}
\end{gather*}
$$

Similarly for $\lambda_{2}=-\frac{8 k}{m}$, one finds

$$
\begin{gather*}
{\left[\begin{array}{cc}
-\frac{7 k}{m}+\frac{8 k}{m} & \frac{2 k}{m} \\
\frac{2 k}{m} & -\frac{4 k}{m}+\frac{8 k}{m}
\end{array}\right]\left[\begin{array}{c}
A_{2} \\
B_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{k}{m} & \frac{2 k}{m} \\
\frac{2 k}{m} & \frac{4 k}{m}
\end{array}\right]\left[\begin{array}{c}
A_{2} \\
B_{2}
\end{array}\right]=0} \\
\Rightarrow A_{2}=-2 B_{2} \tag{20}
\end{gather*}
$$

Then the eigenvectors can be expressed as

$$
\begin{equation*}
\left|\lambda_{1}\right\rangle=A_{1}\binom{1}{2},\left|\lambda_{2}\right\rangle=B_{2}\binom{-2}{1} \tag{21}
\end{equation*}
$$

After normalization, we find

$$
\begin{equation*}
\left|\lambda_{1}\right\rangle=\frac{1}{\sqrt{5}}\binom{1}{2},\left|\lambda_{2}\right\rangle=\frac{1}{\sqrt{5}}\binom{-2}{1} . \tag{22}
\end{equation*}
$$

(c) Using the eigen vectors, the transformation matrix T can then be written as

$$
T=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & -2 \tag{23}\\
2 & 1
\end{array}\right]
$$

Using Mathematica I found the inverse matrix to be

$$
T^{-1}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 1 \tag{24}\\
-2 & 1
\end{array}\right]
$$

Now recalling that

$$
M\left[\begin{array}{l}
x_{1} \tag{25}\\
x_{2}
\end{array}\right]=\frac{d^{2}}{d t^{2}}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

and noting that

$$
T T^{-1}=T^{-1} T=I=\left[\begin{array}{ll}
1 & 0 \tag{26}\\
0 & 1
\end{array}\right]
$$

we can write

$$
M T T^{-1}\left[\begin{array}{c}
x_{1} \tag{27}\\
x_{2}
\end{array}\right]=\frac{d^{2}}{d t^{2}}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Multiplying both sides from the left by T^{-1}, we have

$$
T^{-1} M T T^{-1}\left[\begin{array}{l}
x_{1} \tag{28}\\
x_{2}
\end{array}\right]=\frac{d^{2}}{d t^{2}} T^{-1}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

So that using

$$
T^{-1} M T=D=\left[\begin{array}{cc}
\lambda_{1} & 0 \tag{29}\\
0 & \lambda_{2}
\end{array}\right], T^{-1}\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
X \\
Y
\end{array}\right]
$$

we can re-write Eq. (28) as

$$
\left[\begin{array}{cc}
\lambda_{1} & 0 \tag{30}\\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{c}
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
\ddot{X} \\
\ddot{Y}
\end{array}\right] \Rightarrow \frac{d^{2} X}{d t^{2}}+\omega_{1}^{2} X=0, \frac{d^{2} Y}{d t^{2}}+\omega_{2}^{2} Y=0
$$

where

$$
\begin{equation*}
\omega_{1}^{2}=-\lambda_{1}=\frac{3 k}{m}, \omega_{2}^{2}=-\lambda_{2}=\frac{8 k}{m} \tag{31}
\end{equation*}
$$

The solutions to the differential equations above are given by

$$
\begin{equation*}
X(t)=C \cos \left(\omega_{1} t\right)+D \sin \left(\omega_{1} t\right), Y(t)=E \cos \left(\omega_{2} t\right)+F \sin \left(\omega_{2} t\right) \tag{32}
\end{equation*}
$$

Recalling that

$$
T^{-1}\left[\begin{array}{l}
x_{1} \tag{33}\\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
X \\
Y
\end{array}\right]
$$

and using Eq. (26), we can write

$$
T T^{-1}\left[\begin{array}{l}
x_{1} \tag{34}\\
x_{2}
\end{array}\right]=T\left[\begin{array}{l}
X \\
Y
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=T\left[\begin{array}{l}
X \\
Y
\end{array}\right]
$$

so that substituting the transformation matrix, T, we have

$$
\left[\begin{array}{l}
x_{1} \tag{35}\\
x_{2}
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
C \cos \left(\omega_{1} t\right)+D \sin \left(\omega_{1} t\right) \\
E \cos \left(\omega_{2} t\right)+F \sin \left(\omega_{2} t\right)
\end{array}\right]
$$

so that one finds for the position of the masses

$$
\begin{align*}
& x_{1}(t)=\frac{1}{\sqrt{5}}\left(C \cos \left(\omega_{1} t\right)+D \sin \left(\omega_{1} t\right)\right)-\frac{2}{\sqrt{5}}\left(E \cos \left(\omega_{2} t\right)+F \sin \left(\omega_{2} t\right)\right) \\
& x_{2}(t)=\frac{2}{\sqrt{5}}\left(C \cos \left(\omega_{1} t\right)+D \sin \left(\omega_{1} t\right)\right)+\frac{1}{\sqrt{5}}\left(E \cos \left(\omega_{2} t\right)+F \sin \left(\omega_{2} t\right)\right) \tag{36}
\end{align*}
$$

and the corresponding speeds

$$
\begin{align*}
& \dot{x}_{1}(t)=\frac{\omega_{1}}{\sqrt{5}}\left(-C \sin \left(\omega_{1} t\right)+D \cos \left(\omega_{1} t\right)\right)-\frac{2 \omega_{2}}{\sqrt{5}}\left(-E \sin \left(\omega_{2} t\right)+F \cos \left(\omega_{2} t\right)\right), \\
& \dot{x}_{2}(t)=\frac{2 \omega_{1}}{\sqrt{5}}\left(-C \sin \left(\omega_{1} t\right)+D \cos \left(\omega_{1} t\right)\right)+\frac{\omega_{2}}{\sqrt{5}}\left(-E \sin \left(\omega_{2} t\right)+F \cos \left(\omega_{2} t\right)\right) . \tag{37}
\end{align*}
$$

At the initial time, $t=0$, we know that $\dot{x}_{1}(t)=\dot{x}_{2}(t)=0$,

$$
\begin{gather*}
\dot{x}_{1}(t)=\frac{1}{\sqrt{5}}\left(\omega_{1} D-2 \omega_{2} F\right)=0, \dot{x}_{2}(t)=\frac{1}{\sqrt{5}}\left(2 \omega_{1} D+\omega_{2} F\right)=0 \\
\Rightarrow D=F=0 \tag{38}
\end{gather*}
$$

and we can re-write the positions as

$$
\begin{equation*}
x_{1}(t)=\frac{1}{\sqrt{5}}\left[C \cos \left(\omega_{1} t\right)-2 E \cos \left(\omega_{2} t\right)\right], x_{2}(t)=\frac{1}{\sqrt{5}}\left[2 C \cos \left(\omega_{1} t\right)+E \cos \left(\omega_{2} t\right)\right] \tag{39}
\end{equation*}
$$

At the initial time the masses were displaced, $x_{1}(0)=x_{10}$ and $x_{2}(0)=x_{20}$, which lead to

$$
\begin{equation*}
\frac{1}{\sqrt{5}}(C-2 E)=x_{10}, \frac{1}{\sqrt{5}}(2 C+E)=x_{20} \Rightarrow C=\frac{x_{10}+2 x_{20}}{\sqrt{5}}, E=-\frac{2 x_{10}-x_{20}}{\sqrt{5}} \tag{40}
\end{equation*}
$$

Therefore the position of the two masses are given by

$$
\begin{align*}
& x_{1}(t)=\frac{1}{5}\left[\left(x_{10}+2 x_{20}\right) \cos \left(\omega_{1} t\right)+2\left(2 x_{10}-x_{20}\right) \cos \left(\omega_{2} t\right)\right] \\
& x_{2}(t)=\frac{1}{5}\left[2\left(x_{10}+2 x_{20}\right) \cos \left(\omega_{1} t\right)-\left(2 x_{10}-x_{20}\right) \cos \left(\omega_{2} t\right)\right] \tag{41}
\end{align*}
$$

and the velocity

$$
\begin{align*}
& \dot{x}_{1}(t)=-\frac{1}{5}\left[\left(x_{10}+2 x_{20}\right) \omega_{1} \sin \left(\omega_{1} t\right)+2 \omega_{2}\left(2 x_{10}-x_{20}\right) \sin \left(\omega_{2} t\right)\right] \\
& \dot{x}_{2}(t)=\frac{1}{5}\left[-2\left(x_{10}+2 x_{20}\right) \omega_{1} \sin \left(\omega_{1} t\right)+\left(2 x_{10}-x_{20}\right) \omega_{2} \sin \left(\omega_{2} t\right)\right] \tag{42}
\end{align*}
$$

(d) The position of the two masses we found in part (c) and can be re-written as

$$
\begin{align*}
& x_{1}(t)=\frac{1}{5}\left[\left(\cos \left(\omega_{1} t\right)+4 \cos \left(\omega_{2} t\right)\right) x_{20}+2\left(\cos \left(\omega_{1} t\right)-\cos \left(\omega_{2} t\right)\right) x_{20}\right] \\
& x_{2}(t)=\frac{1}{5}\left[2\left(\cos \left(\omega_{1} t\right)-\cos \left(\omega_{2} t\right)\right) x_{10}+\left(4 \cos \left(\omega_{1} t\right)+\cos \left(\omega_{2} t\right)\right) x_{20}\right] \tag{43}
\end{align*}
$$

so that in a matrix form, one finds

$$
\begin{equation*}
\binom{x_{1}}{x_{2}}=U(t)\binom{x_{20}}{x_{20}} \tag{44}
\end{equation*}
$$

where

$$
U(t)=\frac{1}{5}\left(\begin{array}{cc}
\cos \left(\omega_{1} t\right)+4 \cos \left(\omega_{2} t\right) & 2\left(\cos \left(\omega_{1} t\right)-\cos \left(\omega_{2} t\right)\right) \tag{45}\\
2\left(\cos \left(\omega_{1} t\right)-\cos \left(\omega_{2} t\right)\right) & 4 \cos \left(\omega_{1} t\right)+\cos \left(\omega_{2} t\right)
\end{array}\right)
$$

is the evolution matrix.
(e) To describe the normal modes we assume first the initial state of the two masses is described by the first eigenvector. That means, we may write

$$
\begin{equation*}
\vec{r}_{0}=\binom{x_{10}}{x_{20}}=\frac{1}{\sqrt{5}}\binom{1}{2} \tag{46}
\end{equation*}
$$

then

$$
\vec{r}=U(t) \vec{r}_{0}
$$

gives

$$
\binom{x_{1}}{x_{2}}=\frac{1}{5 \sqrt{5}}\left(\begin{array}{cc}
\cos \left(\omega_{1} t\right)+4 \cos \left(\omega_{2} t\right) & 2\left(\cos \left(\omega_{1} t\right)-\cos \left(\omega_{2} t\right)\right) \tag{47}\\
2\left(\cos \left(\omega_{1} t\right)-\cos \left(\omega_{2} t\right)\right) & 4 \cos \left(\omega_{1} t\right)+\cos \left(\omega_{2} t\right)
\end{array}\right)\binom{1}{2}
$$

which leads to

$$
\begin{gather*}
\binom{x_{1}}{x_{2}}=\frac{1}{5 \sqrt{5}}\binom{\cos \left(\omega_{1} t\right)+4 \cos \left(\omega_{2} t\right)+4 \cos \left(\omega_{1} t\right)-4 \cos \left(\omega_{2} t\right)}{2 \cos \left(\omega_{1} t\right)-2 \cos \left(\omega_{2} t\right)+8 \cos \left(\omega_{1} t\right)+2 \cos \left(\omega_{2} t\right)}=\frac{1}{\sqrt{5}}\binom{\cos \left(\omega_{1} t\right)}{2 \cos \left(\omega_{1} t\right)} \\
\Rightarrow x_{1}(t)=2 x_{2}(t) \tag{48}
\end{gather*}
$$

The two masses oscillate with a frequency, ω_{1}, in the same direction but with different amplitudes. On the other hand, if initially the state of the two masses is given by the second eigenvector

$$
\begin{equation*}
\vec{r}_{0}=\binom{x_{10}}{x_{20}}=\frac{1}{\sqrt{5}}\binom{-2}{1} \tag{49}
\end{equation*}
$$

then we find

$$
\begin{gather*}
\binom{x_{1}}{x_{2}}=\frac{1}{5 \sqrt{5}}\left(\begin{array}{cc}
\cos \left(\omega_{1} t\right)+4 \cos \left(\omega_{2} t\right) & 2\left(\cos \left(\omega_{1} t\right)-\cos \left(\omega_{2} t\right)\right) \\
2\left(\cos \left(\omega_{1} t\right)-\cos \left(\omega_{2} t\right)\right) & 4 \cos \left(\omega_{1} t\right)+\cos \left(\omega_{2} t\right)
\end{array}\right)\binom{-2}{1} \\
=\frac{1}{5 \sqrt{5}}\binom{-2 \cos \left(\omega_{1} t\right)-8 \cos \left(\omega_{2} t\right)+2 \cos \left(\omega_{1} t\right)-2 \cos \left(\omega_{2} t\right)}{-4 \cos \left(\omega_{1} t\right)+4 \cos \left(\omega_{2} t\right)+4 \cos \left(\omega_{1} t\right)+\cos \left(\omega_{2} t\right)}=\frac{1}{\sqrt{5}}\binom{-2 \cos \left(\omega_{2} t\right)}{\cos \left(\omega_{2} t\right)} \\
\Rightarrow x_{1}(t)=-\frac{1}{2} x_{2}(t) \tag{50}
\end{gather*}
$$

The two masses oscillate with a frequency ω_{2} out of phase but with different amplitudes.
2.
(a) Prove that

$$
\begin{equation*}
B(q, p)=B(p, q) \tag{51}
\end{equation*}
$$

(b) Express the integrals

$$
\begin{equation*}
I_{1}=\int_{0}^{1} \frac{x^{4}}{\sqrt{1-x^{2}}} d x, \quad I_{2}=\int_{0}^{\pi} \sin ^{3}(\theta) \cos (\theta) d \theta \tag{52}
\end{equation*}
$$

as beta functions and then write each beta functions in terms of the Gamma functions using the relation we derived in Example 6.2,

$$
\begin{equation*}
B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)} \tag{53}
\end{equation*}
$$

When possible use the Gamma function formulas such as

$$
\begin{equation*}
\Gamma(p)=\int_{0}^{\infty} x^{p-1} e^{-x} d x, \quad \Gamma(p+1)=p \Gamma(p), \Gamma(1 / 2)=\sqrt{\pi} \tag{54}
\end{equation*}
$$

to write an exact answer in terms of $\pi, \sqrt{2}$, etc.
(c) Applying the result in Example 11.1 show that the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-y^{2} / a} d y=\sqrt{a \pi} \tag{55}
\end{equation*}
$$

for $a>0$.

Solution:

(a) We recall

$$
\begin{equation*}
B(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x \tag{56}
\end{equation*}
$$

So that

$$
\begin{equation*}
B(q, p)=\int_{0}^{1} x^{q-1}(1-x)^{p-1} d x \tag{57}
\end{equation*}
$$

Introducing a new variable

$$
1-x=y \Rightarrow\left\{\begin{array}{c}
x=1-y,-d y=d x \tag{58}\\
x_{1}=0 \Rightarrow y_{1}=1 \\
x_{2}=1 \Rightarrow y_{2}=0
\end{array}\right.
$$

we may find

$$
\begin{equation*}
B(q, p)=\int_{1}^{0}(1-y)^{q-1} y^{p-1}(-d y)=-\int_{1}^{0} y^{p-1}(1-y)^{q-1} d y=\int_{0}^{1} y^{p-1}(1-y)^{q-1} d y=B(p, q) \tag{59}
\end{equation*}
$$

(b) The integral

$$
\begin{equation*}
I=\int_{0}^{1} \frac{x^{4}}{\sqrt{1-x^{2}}} d x \tag{60}
\end{equation*}
$$

can be rewritten as

$$
\begin{equation*}
I=\int_{0}^{1} x^{4}\left(1-x^{2}\right)^{-\frac{1}{2}} d x \tag{61}
\end{equation*}
$$

Introducing the transformation of variable defined by

$$
x^{2}=y \Rightarrow\left\{\begin{array}{c}
2 x d x=d y \Rightarrow d x=\frac{d y}{2 x}=\frac{d y}{2 \sqrt{y}} \tag{62}\\
x=0 \Rightarrow y=0 \\
x=1 \Rightarrow y=1
\end{array}\right.
$$

we find

$$
\begin{equation*}
I=\int_{0}^{1} y^{2}(1-y)^{-\frac{1}{2}} \frac{d y}{2 \sqrt{y}} \Rightarrow I=\frac{1}{2} \int_{0}^{1} y^{\frac{3}{2}}(1-y)^{\frac{1}{2}-1} d y \tag{63}
\end{equation*}
$$

Comparing this with the expression for the Beta function

$$
\begin{equation*}
B(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x \tag{64}
\end{equation*}
$$

we note that the integral can be expressed as

$$
\begin{equation*}
I=\frac{1}{2} B\left(\frac{5}{2}, \frac{1}{2}\right) . \tag{65}
\end{equation*}
$$

Using

$$
\begin{equation*}
B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)} \tag{66}
\end{equation*}
$$

we find

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{4}}{\sqrt{1-x^{2}}} d x=\frac{1}{2} \frac{\Gamma\left(\frac{5}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma(3)} . \tag{67}
\end{equation*}
$$

(c) Introducing the variable

$$
\begin{equation*}
t=y / \sqrt{a} \Rightarrow d y=\sqrt{a} d t \tag{68}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-y^{2} / a} d y=\sqrt{a} \int_{-\infty}^{\infty} e^{-t^{2}} d t=2 \sqrt{a} \int_{0}^{\infty} e^{-t^{2}} d t \tag{69}
\end{equation*}
$$

Using the result from Example 11.1

$$
\begin{equation*}
\int_{0}^{\infty} e^{-u^{2}} d u=\frac{\sqrt{\pi}}{2} \tag{70}
\end{equation*}
$$

one can easily find

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-y^{2} / a} d y=\sqrt{a \pi} \tag{71}
\end{equation*}
$$

3. Using Stirling's formula evaluate
(a)

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\frac{\Gamma\left(n+\frac{3}{2}\right)}{\sqrt{n} \Gamma(n+1)}\right] \tag{72}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\frac{(2 n)!\sqrt{n}}{2^{2 n}(n!)^{2}}\right] \tag{73}
\end{equation*}
$$

Solution:

(a) Using the Stirling formula

$$
\begin{equation*}
\Gamma(p+1) \sim p^{p} e^{-p}(2 \pi p)^{\frac{1}{2}} \tag{74}
\end{equation*}
$$

we can write

$$
\begin{gather*}
\Gamma\left(n+\frac{3}{2}\right)=\Gamma\left(n+\frac{1}{2}+1\right) \Rightarrow \Gamma\left(n+\frac{3}{2}\right) \sim\left(n+\frac{1}{2}\right)^{\left(n+\frac{1}{2}\right)} e^{-\left(n+\frac{1}{2}\right)}(2 \pi)^{\frac{1}{2}}\left(n+\frac{1}{2}\right)^{\frac{1}{2}} \\
\Rightarrow \Gamma\left(n+\frac{3}{2}\right) \sim\left(n+\frac{1}{2}\right)^{(n+1)} e^{-\left(n+\frac{1}{2}\right) \sqrt{2 \pi}} \tag{75}
\end{gather*}
$$

and

$$
\begin{equation*}
\Gamma(n+1) \sim n^{n} e^{-n}(2 \pi)^{\frac{1}{2}} n^{\frac{1}{2}} \Rightarrow \Gamma(n+1) \sim n^{n+\frac{1}{2}} e^{-n} \sqrt{2 \pi} \Rightarrow \sqrt{n} \Gamma(n+1) \sim n^{n+\frac{1}{2}} e^{-n} \sqrt{2 \pi} \tag{76}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\Gamma\left(n+\frac{3}{2}\right)}{\sqrt{n} \Gamma(n+1)} \sim \lim _{n \rightarrow \infty}\left[\frac{\left(n+\frac{1}{2}\right)^{(n+1)} e^{-\left(n+\frac{1}{2}\right)} \sqrt{2 \pi}}{n^{n+1} e^{-n} \sqrt{2 \pi}}\right]=e^{-\frac{1}{2}} \lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{2 n}\right)^{(n+1)}\right] \tag{77}
\end{equation*}
$$

Noting that

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{2 n}\right)^{(n+1)}\right]=\lim _{n \rightarrow \infty} e^{\ln }\left[\left(1+\frac{1}{2 n}\right)^{(n+1)}\right]=e^{\lim _{n \rightarrow \infty} \ln }\left[\left(1+\frac{1}{2 n}\right)^{(n+1)}\right] \\
= & e^{\lim _{n \rightarrow \infty}}\left[(n+1) \ln \left(1+\frac{1}{2 n}\right)\right]=e^{\lim _{n \rightarrow \infty}\left[\frac{\ln \left(1+\frac{1}{2 n}\right)}{\frac{1}{(n+1)}}\right] \Rightarrow{ }^{\lim _{n \rightarrow \infty}\left[\frac{\ln \left(1+\frac{1}{2 n}\right)}{\frac{1}{(n+1)}}\right]=\frac{0}{0} .}} .=\frac{0}{} . \tag{78}
\end{align*}
$$

Hence, we can apply Le'Hospital rule which leads to

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{2 n}\right)^{(n+1)}\right]=\lim _{n \rightarrow \infty} \frac{\frac{d}{d n}\left[\ln \left(1+\frac{1}{2 n}\right)\right]}{\frac{d}{d n}\left[\frac{1}{(n+1)}\right]}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{2 n}\right)\left(\frac{-1}{2 n^{2}}\right)}{\frac{-1}{(n+1)^{2}}}=\lim _{n \rightarrow \infty} \frac{\frac{-1}{n(2 n+1)}}{\frac{-1}{(n+1)^{2}}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n(2 n+1)} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}\left(1+\frac{1}{n}\right)^{2}}{n^{2}\left(2+\frac{1}{n}\right)} \Rightarrow \lim _{n \rightarrow \infty}\left[\frac{\left(1+\frac{1}{n}\right)^{2}}{\left(2+\frac{1}{n}\right)}\right]=\frac{1}{2} \Rightarrow \lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{2 n}\right)^{(n+1)}\right]=\lim _{n \rightarrow \infty} e^{\ln }\left[\left(1+\frac{1}{2 n}\right)^{(n+1)}\right]=e^{\frac{1}{2}} \tag{79}
\end{align*}
$$

Therefore

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left[\frac{\Gamma\left(n+\frac{3}{2}\right)}{\sqrt{n} \Gamma(n+1)}\right] & =e^{-\frac{1}{2}} \lim _{n \rightarrow \infty}\left[\frac{\left(n+\frac{1}{2}\right)^{n+1}}{n^{n+1}}\right]=e^{-\frac{1}{2}} e^{\lim _{n \rightarrow \infty}}\left[\frac{\ln \left(1+\frac{1}{2 n}\right)}{\frac{1}{(n+1)}}\right]=e^{-\frac{1}{2}} e^{\frac{1}{2}} \\
& \Rightarrow \lim _{n \rightarrow \infty}\left[\frac{\Gamma\left(n+\frac{3}{2}\right)}{\sqrt{n} \Gamma(n+1)}\right] \simeq 1 \tag{80}
\end{align*}
$$

(b) We recall the Stirling's formula

$$
\begin{equation*}
n!\simeq n^{n} e^{-n} \sqrt{2 \pi n} \tag{81}
\end{equation*}
$$

so that for large n we may write

$$
\begin{equation*}
\lim _{\infty} \frac{(2 n)!\sqrt{n}}{2^{2 n}(n!)^{2}}=\frac{(2 n)^{2 n} e^{-2 n}(2 \pi 2 n n)^{\frac{1}{2}}}{2^{2 n}\left[n^{n} e^{-n} \sqrt{2 \pi n}\right]^{2}} \Rightarrow \underline{\lim }_{\infty} \frac{(2 n)!\sqrt{n}}{2^{2 n}(n!)^{2}} \simeq \frac{\sqrt{\pi}}{\pi}=\frac{1}{\sqrt{\pi}} \tag{82}
\end{equation*}
$$

4. The integral

$$
\begin{equation*}
\int_{x}^{\infty} u^{p-1} e^{-u} d u=\Gamma(p, x) \tag{83}
\end{equation*}
$$

is called an incomplete Gamma function. Note that for $x=0$, you find the Gamma function

$$
\begin{equation*}
\int_{0}^{\infty} u^{p-1} e^{-u} d u=\Gamma(p) \tag{84}
\end{equation*}
$$

By repeated integration find several terms of the asymptotic series for $\Gamma(p, x)$.

1. NB: I found

$$
\begin{gather*}
\Gamma(p, x)=\int_{x}^{\infty} u^{p-1} e^{-u} d u \\
=x^{p-1} e^{-x}\left[1+(p-1) x^{-1}+(p-1)(p-2) x^{-2}+(p-1)(p-2)(p-3) x^{-3} \ldots\right] \tag{85}
\end{gather*}
$$

Solution: Introducing the transformation defined by

$$
\begin{equation*}
u=f^{p-1} \Rightarrow d u=(p-1) f^{p-2} d f, d v=e^{-f} \Rightarrow v=-e^{-f} \tag{86}
\end{equation*}
$$

and using integration by parts

$$
\begin{equation*}
\int u d u=u v-\int v d v \tag{87}
\end{equation*}
$$

the integral

$$
\begin{equation*}
I=\int_{x}^{\infty} f^{p-1} e^{f} d f \tag{88}
\end{equation*}
$$

can be expressed as

$$
\begin{equation*}
I=-\left.f^{p-1} e^{-f}\right|_{x} ^{\infty}+(p-1) \int_{x}^{\infty} f^{p-2} e^{-f} d f=x^{p-1} e^{-x}+(p-1) \int_{x}^{\infty} f^{p-2} e^{-f} d f \tag{89}
\end{equation*}
$$

Following the same procedure we can show that

$$
\begin{gather*}
\int_{x}^{\infty} f^{p-2} e^{-f} d f=x^{(p-2)} e^{-x}+(p-2) \int_{x}^{\infty} f^{p-3} e^{-f} d f, \tag{90}\\
\int_{x}^{\infty} f^{p-3} e^{-f} d f=x^{(p-3)} e^{-x}+(p-3) \int_{x}^{\infty} f^{p-4} e^{-f} d f, \\
\Rightarrow \int_{x}^{\infty} f^{p-2} e^{-f} d f=x^{(p-2)} e^{-x}+(p-2) x^{(p-3)} e^{-x}+(p-2)(p-3) \int_{x}^{\infty} f^{p-4} e^{-f} d f \tag{91}
\end{gather*}
$$

Therefore

$$
\begin{align*}
\int_{x}^{\infty} f^{p-1} e^{-f} d f= & x^{(p-1)} e^{-x}+(p-1) x^{(p-2)} e^{-x}+(p-1)(p-2) x^{(p-3)} e^{-x} \\
& +(p-1)(p-2)(p-3) \int_{x}^{\infty} f^{p-4} e^{-f} d f \ldots \tag{92}
\end{align*}
$$

There follows that

$$
\begin{align*}
& \int_{x}^{\infty} f^{p-1} e^{-f} d f=e^{-x}\left[x^{(p-1)}+(p-1) x^{p-2}+(p-1)(p-2) x^{p-3}+(p-1)(p-2)(p-3) x^{p-4} \ldots\right] \\
& \Rightarrow \int_{x}^{\infty} x^{p-1} e^{-f} d f=x^{p-1} e^{-x}\left[1+(p-1) x^{-1}+(p-1)(p-2) x^{-2}+(p-1)(p-2)(p-3) x^{-3} \ldots\right] \tag{93}
\end{align*}
$$

5. Using the Gamma and Beta function formulas show that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d y}{(1+y) \sqrt{y}}=\pi \tag{94}
\end{equation*}
$$

6.

(a) Prove that the error function

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \tag{95}
\end{equation*}
$$

is an odd function.
(b) Show that

$$
\begin{equation*}
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t=\frac{1}{2}+\frac{1}{2} \operatorname{erf}(x / \sqrt{2}) \tag{96}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{erf}(x / \sqrt{2})=\frac{2}{\sqrt{\pi}} \int_{0}^{x / \sqrt{2}} e^{-t^{2}} d t \tag{97}
\end{equation*}
$$

is the error function.

Solution:

(a) Noting that

$$
\begin{equation*}
\operatorname{erf}(-x)=\frac{2}{\sqrt{\pi}} \int_{0}^{-x} e^{-t^{2}} d t \tag{98}
\end{equation*}
$$

and using the transformation defined by

$$
t=-u \Rightarrow\left\{\begin{array}{c}
d t=-d u \tag{99}\\
t=0 \Rightarrow u=0 \\
t=-x \Rightarrow u=x
\end{array}\right.
$$

we find

$$
\begin{equation*}
\operatorname{erf}(-x)=-\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} d u=-\operatorname{erf}(x) \tag{100}
\end{equation*}
$$

which shows that the error function is an odd function.
(a) Noting that

$$
\begin{gather*}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} e^{-t^{2} / 2} d t+\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-t^{2} / 2} d t \\
=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-t^{2} / 2} d t+\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-t^{2} / 2} d t=\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{\pi}{2}}+\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-t^{2} / 2} d t \\
\Rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t=\frac{1}{2}+\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-t^{2} / 2} d t \tag{101}
\end{gather*}
$$

The error function can also be expressed as

$$
\begin{equation*}
\frac{1}{2} \operatorname{erf}(x / \sqrt{2})=\Phi(x)-\frac{1}{2} \Rightarrow \Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t=\frac{1}{2}+\frac{1}{2} \operatorname{erf}(x / \sqrt{2}) \tag{102}
\end{equation*}
$$

