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1. Consider a system consisting of two masses m; and mso connected by three three springs with spring constant
ki1, k2, and ko as shown in Fig. 1.The masses can slide on a horizontal, frictionless surface. The springs are at

ki f k., ﬂ ks

Figure 1: Two masses and three different springs.

their unstretched /uncompressed lengths when the masses are at its equilibrium positions. At ¢t = 0, the masses
are displaced from its equilibrium positions by the amounts z19 and x99 and released from rest.

(a) Find the kinetic energy, the potential energy, and the Lagrangian. Using the Euler-Lagrange equation
derive the equations of motion for each masses and express the equations using matrices

4]-u[z].
Zo T2
(b) Let’s assume that two atoms have nearly the same mass (i.e. m; ~my =m) and ,
k1 = bk, ko = 2k, ks = 2k. (2)
Using Similarity Transformation find the Eigenvalues and Eigenvectors for the matrix M.
(¢) For the two masses find the displacements (z1 (t) and x5 (t)) and speeds (i1 (¢) and 25 (t))
(d) Find the propagator matrix.

(e) Describe the Normal Modes of Vibration of the atoms.
Solution:

(a) The kinetic energy can be expressed as

1 1
T= imlx% + §m2x§ (3)
The elastic potential energy is given by
1
U= 5 [k?1$% + /€3$§ + kg (1‘1 - 1‘2)2} (4)
Then the Lagrangian
L=T-U (5)
becomes ) )
L= 5 (mlx% + m2i2) - 5 |:k1(L'% + kgl'g + kQ ((El - $2)2] . (6)

The equations of motion, using Fuler-Lagrange’s equation,

d <dL) aL _, -

df \dg; ) dg;
can be written as
k k k
midr = —kixy — ko (1 —22) = & = — <2+1> 1 + iyv
mq miq
.. . k ko + k
Moo = 7]433332 + k’g (l‘l — 1‘2) = To = 72{E — < 2 3> ) (8)
mo mo



In a matrix from this can be put in the form

ko+kq ko 2 2
- ey | @ o | 4 m
] [n]-Eln ] n]-E ) ®
where
_kotky ko
M= [ Kyl _kaths 1 : (10)
ma2 mao

For the case my ~ mgo = m and k; = 5k, ko = 2k, k3 = 2k, the matrix in part (a) becomes

_Tk 2k
v-[§ 4]
The equation of motion
d2 T X1
= 11
dt? { T2 } T2 (11)
can be re-written as
P = M7 (12)
where
. . . R A 1 R 0
T:x161—|—x162:>r:x161+a:162,61:(0),622(1). (13)

We recall that for a matrix M the similarity transformation is given by
D=T7"'MT, (14)

where 7" is a matrix whose columns are the eigenvectors and the matrix D is a diagonal matrix where the
elements are the eigenvalues to the Eigenvalue equation for matrix M. Suppose if we can find eigenvectors R
such that

MR = AR, (15)
then the eigenvalue equation can be written as
_Tk _ 2k k k2
det| ™y, A A" =0= N+ 11—\ +24— =0, (16)
m “m A m m2
and the eigenvalues become
3k 8k
A =—— 0. = —— (17)

By =2A,. (19)
Similarly for Ao = —%, one finds
Smam o 9ra_[E B[4,
x" wim || =B L5
= A2 = —-2B, (20)



Then the eigenvectors can be expressed as

A1>:A1<;>,|/\2>:Bg( ) >

() ()

Using the eigen vectors, the transformation matrix 7" can then be written as

=5l v

Using Mathematica I found the inverse matrix to be

After normalization, we find

Now recalling that

and noting that
1 1|10
Tr— =T T_I_[O e
we can write

prr [~ L [
T 2| 22 |’

Multiplying both sides from the left by 7!, we have

T*lMTTfl |: Z1 :| _ di2T71 |: T :|
To

So that using

we can re-write Eq. (28) as

A0 X]_[X X, Y,
5 R][F)-[F ] o rar

where

The solutions to the differential equations above are given by

X (t) = Ccos (wit) + Dsin (wqt), Y (t) = E cos (wat) + F sin (wat)

1 T o X
~a]-[7]
and using Eq. (26), we can write

U EEI B A R R

Recalling that

>~

(23)

(28)

(29)



so that substituting the transformation matrix, T, we have

rp |1 1 =2 C cos (w1t) + Dsin (w1t)
xo 2 1 E cos (wat) + F'sin (wat)

VB

so that one finds for the position of the masses

1 . 2 .
z1(t) = 7 (C cos (w1t) + Dsin (wit)) — 7 (E cos (wat) + F'sin (wat)) ,
2 . 1 :
z2(t) = 7 (C cos (w1t) + Dsin (wqt)) + 7 (E cos (wat) + F'sin (wat)) ,
and the corresponding speeds
i = Y Csin(w cos (w f@fsinw cos (w
T (t) = Vé(j (wit) + D cos (w1t)) N@(E (wat) + F cos (wat))
() = 2% (=C'sin (w1t) + D cos (wit)) + % (=E'sin (wst) + F cos (wst)).

At the initial time, ¢ = 0, we know that & (t) = @3 (t) = 0,

8 = (0D — s F) = 0. (£) =
i1 (t)—\/g( 1D — 2wy F) = 0, 2 (£) NG
=D=F=0

(2LL)1D + CUQF) =0

and we can re-write the positions as

z1 (t) = L [C cos (w1t) — 2F cos (wat)], z2 (t) = L [2C cos (w1t) + E cos (wat)] .

V5 V5
At the initial time the masses were displaced, x1 (0) = z19 and x5 (0) = 239, which lead to
%(C—QE) :xlo,%(QC—i-E) — 2y = C = %\/523”20 . —2""”10%.
Therefore the position of the two masses are given by
z1(t) = % [(z10 + 2w20) cos (wit) + 2 (2x10 — @20) cos (wat)]
xo (1) = % [2 (z10 + 220) cos (w1t) — (2219 — X20) cos (wat)],
and the velocity
T (t) = —% [(z10 4 2220) w1 sin (w1t) + 2ws (2219 — T20) sin (wat)],
B2(f) = £ [2 (@10 + 2m0) wn sin (wrt) + (2010 — w20) w3 5in (wa1)]
The position of the two masses we found in part (c) and can be re-written as
z(t) = % [(cos (w1t) + 4 cos (wat)) x20 + 2 (cos (w1t) — cos (wat)) zag]
xo (t) = é [2 (cos (w1t) — cos (wat)) x10 + (4 cos (w1t) + cos (wat)) T20] -

so that in a matrix form, one finds
(2)=ro()
T2 20
U(t) = 1/ cos(wit) +4cos(wat)  2(cos(wit) — cos (wat))
5\ 2(cos(wit) —cos (wat))  4cos(wit) + cos (wat)

is the evolution matrix.

where

(35)

(40)

(44)

(45)



(e) To describe the normal modes we assume first the initial state of the two masses is described by the first
eigenvector. That means, we may write
L, T10 1 1
T = = — 46
()5 () <>

7 = U(t)

then

gives
(0) -5 (mbaytontn Ao T V) (3)

which leads to
z 1 cos (w1t) + 4 cos (wat) + 4 cos (wit) — 4 cos (wat) _ 1 [ cos(wit)
3 ) 55 \ 2cos(wit) — 2cos (wat) + 8cos (wit) +2cos (wat) ) /5 \ 2cos(wit)
= 1 (t) = 222 (1) (48)

The two masses oscillate with a frequency, wy, in the same direction but with different amplitudes. On the
other hand, if initially the state of the two masses is given by the second eigenvector

(o) =5l7) "

(2) =5z (sl tomtent Bemtend Lol V(1)

1 ( —2cos (w1t) — 8 cos (wat) + 2 cos (wit) — 2 cos (wat) ) 1 ( —2cos (wat) )

then we find

- 5v5 \ —4cos (wit) + 4 cos (wat) + 4 cos (wit) + cos (wat) |~ /5 cos (wat)
S () = —%zg (). (50)

The two masses oscillate with a frequency ws out of phase but with different amplitudes.

(a) Prove that
B(¢,p) = B(p,9) (51)

(b) Express the integrals

1 4 ™

x .
I = ——dz, I z/ sin®(8) cos(6)do 52
= [ st e [ s eos(0) (52)
as beta functions and then write each beta functions in terms of the Gamma functions using the relation we

derived in Example 6.2,
I'(p)l'(q)

B(p,q) = ——. 53
v I'(p+aq) (52)
When possible use the Gamma function formulas such as
D)= [ orledn, D+ 1) =php). T1/2) = VR (54)
0

to write an exact answer in terms of 7, v/2, etc.

(¢) Applying the result in Example 11.1 show that the integral

/ e V' /9dy = \/ar, (55)

for a > 0.



Solution:
(a) We recall
1
Bl = [ o (10 do
0

So that
1

Blap)= [ o (-0 do
0
Introducing a new variable
r=1-y,—dy =dx,
l—zrz=y= z1=0=>y =1,
To=1=1ys=0

we may find

1

0 0
B(q,p) = /1 (1—y) ™yt (—dy) = —/1 Y (1 —y) dy = /0 Y (1—y)"  dy = B (p,q)

(b) The integral

1 24
1:/'————m
0o Vv 1-— £C2
can be rewritten as
1

1
I:/ x* (1 fx2)_§dx.
0

Introducing the transformation of variable defined by

Qxdaxzdyida::g—g:;f—yf,

- Y

=y = r=0=>y=0, )
r=1=>y=1,

we find

1 1
1 1 i
I=/ -yt =>I=*/ v (1—y)? " dy.
0 0

2./y 2

Comparing this with the expression for the Beta function

1
B(p,q) = / (1 - 2)T e
0

=ip(2 1)
2 272

we note that the integral can be expressed as

Using

we find

[ LI
o V1-—a? 2 (3
(¢) Introducing the variable

t=y/Va=dy = adt

we have

/ eny/“dy = ﬁ/ e Vdt = 2\/5/ et dt
—o00 —o00 0

(59)

(64)



Using the result from Example 11.1

/ e du = VT (70)
0 2
one can easily find
/ ef?f/ady =+ar (71)
3. Using Stirling’s formula evaluate
(a)
r (n + §)
li —_—2 72
nvoo [\/ﬁf(n—kl) (72)
v (2n)vn
) n)lv/n
Jm |G| (79)
Solution:
(a) Using the Stirling formula
T (p+1) ~ple ™ (2mp)* (74)
we can write
3 1 3 1) (%) Do 1 1\?
r °)=r ~ 41 r 2) ~ - =(n+3) (272 -
(n+2) <n+2+ ):> (n+2) (n+2> e 2) (2m) <n+2>
(n+1)
3 1
=T (n + 2) ~ <n + 2) e (t3)/or (75)
and 1 1 1 1
F(n+1)~n"e ™ 2m)2n2 =T (n+1)~n"T2e"V2r = /nl (n+ 1) ~n"T2e V21 (76)
Therefore
r 3 1D —(n+3) /or 1\ D
fm L3 e e et tim (14— . (77)
n—oo /Nl (n+1) n—oo nntle—n\/or "0 m

Noting that

lim

n—oo

1 (n+1) 1 (n+1) .
<1 + > = lim ™ (1 + ) = liMn—ocIn
2n n—o00 2n

, 1 : In (14 5=
— elll’nnﬂoo |:(n_|_1) ln <1_|_ >:| — ehmn*mC [H( ;‘_271)

2n GESY)

0
=5 (1)

Hence, we can apply Le’Hospital rule which leads to

(n+1) d 1 1 —1 _ =1 2
1 4 p (14 & 1+ ) (=L o 1
lim <1+2) = lim 4l T 2n)) En( o] gy Ot e) (55) 2’_12 () _ iy 2 Yim 7("; )1
n—oo n n—oo 4 (7L_1|_1):| n—oo (n+1)2 n—oo (n+1)2 n—oo ’I’L( n + )
n? (1+ 1) (1+1)° 1\ 1\
=l n_ = i AN W B 14+ — = lim e™ | (14 — =e2
e IR L) et | @ ) | T2 7 et ( +2n) e ( +2n> ¢
(79)
Therefore
3 1\n+1 1
lim | 2 (n+3) _ ot lim (n+3) _ hlimae [ (L+3) | _ .
n—oo |/l (n+1) n—00 n"tl (n-li-l)
r (n + 3)
li — 2] I~
= [\/ﬁr (n+1) (80)




(b) We recall the Stirling’s formula

n,_ —n

n!l ~n"e 2mn
so that for large n we may write

| 2n __9n % |
i (QTL)\/?Z _ (2n)"e (27T2nng = lim @2n)l/n /7
—" 92n (’I’L') 92n [n"e*”\/%] — 7 92n (nl)

4. The integral
/ uP~te "du = T'(p, )
x

is called an incomplete Gamma function. Note that for z = 0, you find the Gamma function
o0
/ uP~ e "du = T'(p).
0
By repeated integration find several terms of the asymptotic series for I'(p, z).

1. NB: I found

F(p,z):/ uP" e du

= gPle® [1 +(p-1) 7+ (p—1)(p—2) x 2+ p—-1)(p-2)(p-13) w_?’...]
Solution: Introducing the transformation defined by

u=frt=sdu=(p-1) 2 dfdv=et s v=—e’

/udu:uv—/vdv

I= /:O el df

and using integration by parts
the integral

can be expressed as
I= —f”_le—f’zo + (p— 1)/ fP2eddf =aP e 4+ (p— 1)/ fr2e df
x x
Following the same procedure we can show that

| et —ar e g2 [ ey

/ frleldf = aPVe™ 4 (p - 3) / frtetdf,
= / P2 tdf = 2P~ 4 (p—2) aP=De" 4 (r—2)(p—3) / frtetdf
Therefore

/ e ddf =2 Ve 4 (p-1) 2P Ve 4 (p—1) (p—2) 2P Ve

+p—1)(p—2)(p—3) / T paetgp

x

(81)

(82)

(83)

(84)

(90)

(91)

(92)



There follows that
/OO frletdf = e 20D 4 (- a2 (p=1) (= 2) 2”4 (p— 1) (p—2) (p—3) 2" ..
= /00 e ldf =2 e 1+ (p—-Da t+(p-D(p-2)2 2+ (p-1)(p—2)(p—3)z 3] (93)

5. Using the Gamma and Beta function formulas show that

| oy
6.
(a) Prove that the error function
2 r 2
erf (z) = —/ e dt (95)
VT Jo
is an odd function.
(b) Show that
1 r 2 1 1
(z) = — 20 = = 4 Zerf 2
@=—=] e L Lt (ov2). (96)
where 13
2 [TVE .
af (z/V2) = —= e Vdt (97)
(2=
is the error function.
Solution:
(a) Noting that
2 7 2
erf (—z) = —/ e dt (98)
VT Jo
and using the transformation defined by
dt = —du
t=—-u= t=0=u=0 (99)
t=—rTr=>u=u
we find 5 o
erf (—z) = ——/ e " du = —erf (x) (100)
VT Jo

which shows that the error function is an odd function.

(a) Noting that

L[ e 1 /0 ey 1 /"f ey
— e At = — e " Pdt+ — | e /Pt
V2T w/—oo Vom J V21 Jo
L% 2 1 /T ey 1 \/? 1 /T ey
=—— [ e Pdt+—= | e Pdt=——=/5+— | e/t
\/%/0 V2 Jo Ver V2 Ver o

L[ 11 /m 2
= — e " Pdt=-+ — | e " /dt 101
vV 2 /—oo 2 vV 2 0 ( )

The error function can also be expressed as
1

%erf (m/\/i) =®(x) — % = O(z) = Nor /; e 12t = % + %erf (x/ﬂ) . (102)

10



