## PHYS 3160 HOMEWORK ASSIGNMENT 03 DUE DATE FEBRUARY 17, 2020

| Instructor: Dr. Daniel Erenso | Name: ———— |  |
|-------------------------------|------------|--|
|                               |            |  |
|                               |            |  |
|                               |            |  |
|                               |            |  |
|                               |            |  |
|                               |            |  |
|                               |            |  |
|                               |            |  |
|                               |            |  |
| Mandatory problems: 1 & 3     |            |  |
| Student signature:            |            |  |
|                               |            |  |
|                               |            |  |
| Comment:                      |            |  |
|                               |            |  |

| P #   | 1 | 2 | 3 | 4 | 5 | Score |
|-------|---|---|---|---|---|-------|
| Score | / | / | / | / | / | /100  |

1. Consider a system consisting of two masses  $m_1$  and  $m_2$  connected by three three springs with spring constant  $k_1, k_2$ , and  $k_2$  as shown in Fig. 1.



Figure 1: Two masses and three different springs.

The masses can slide on a horizontal, frictionless surface. The springs are at their unstretched/uncompressed lengths when the masses are at its equilibrium positions. At t = 0, the masses are displaced from its equilibrium positions by the amounts  $x_{10}$  and  $x_{20}$  and released from rest.

(a) Find the kinetic energy, the potential energy, and the Lagrangian. Using the Euler-Lagrange equation derive the equations of motion for each masses and express the equations using matrices

$$\left[\begin{array}{c} \ddot{x}_1 \\ \ddot{x}_2 \end{array}\right] = M \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]. \tag{1}$$

(b) Let's assume that two atoms have nearly the same mass (i.e.  $m_1 \simeq m_2 = m$ ) and,

$$k_1 = 5k, k_2 = 2k, k_3 = 2k. (2)$$

Using Similarity Transformation find the Eigenvalues and Eigenvectors for the matrix M.

- (c) For the two masses find the displacements  $(x_1(t))$  and  $x_2(t)$  and speeds  $(\dot{x}_1(t))$  and  $\dot{x}_2(t)$
- (e) Find the propagator matrix.
- (f) Describe the Normal Modes of Vibration of the atoms.

2.

(a) Prove that

$$B(q,p) = B(p,q) \tag{3}$$

(b) Express the integrals

$$I_{1} = \int_{0}^{1} \frac{x^{4}}{\sqrt{1 - x^{2}}} dx, \quad I_{2} = \int_{0}^{\pi} \sin^{3}(\theta) \cos(\theta) d\theta$$
 (4)

as beta functions and then write each beta functions in terms of the Gamma functions using the relation we derived in *Example 6.2*,

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}. (5)$$

When possible use the Gamma function formulas such as

$$\Gamma(p) = \int_0^\infty x^{p-1} e^{-x} dx, \quad \Gamma(p+1) = p\Gamma(p), \ \Gamma(1/2) = \sqrt{\pi}$$
(6)

to write an exact answer in terms of  $\pi$ ,  $\sqrt{2}$ , etc.

(c) Applying the result in Example 11.1 show that the integral

$$\int_{-\infty}^{\infty} e^{-x^2/a} dx = \sqrt{a\pi},\tag{7}$$

for a > 0.

3. Using Stirling's formula evaluate

$$\lim_{n \to \infty} \left[ \frac{\Gamma\left(n + \frac{3}{2}\right)}{\sqrt{n}\Gamma\left(n + 1\right)} \right] \tag{8}$$

$$\lim_{n \to \infty} \left[ \frac{(2n)!\sqrt{n}}{2^{2n}(n!)^2} \right] \tag{9}$$

4. The integral

$$\int_{r}^{\infty} u^{p-1}e^{-u}du = \Gamma(p,x) \tag{10}$$

is called an incomplete Gamma function. Note that for x = 0, you find the Gamma function

$$\int_0^\infty u^{p-1}e^{-u}du = \Gamma(p). \tag{11}$$

By repeated integration find several terms of the asymptotic series for  $\Gamma(p,x)$ .

NB: I found

$$\Gamma(p,x) = \int_{x}^{\infty} u^{p-1} e^{-u} du$$

$$= x^{p-1} e^{-x} \left[ 1 + (p-1) x^{-1} + (p-1) (p-2) x^{-2} + (p-1) (p-2) (p-3) x^{-3} \dots \right]$$
(12)

5. Using the Gamma and Beta function formulas show that

$$\int_0^\infty \frac{dy}{(1+y)\sqrt{y}} = \pi \tag{13}$$

6.

(a) Prove that the error function

erf 
$$(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
 (14)

is an odd function.

(b) Show that

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(x/\sqrt{2}\right), \tag{15}$$

where

$$\operatorname{erf}\left(x/\sqrt{2}\right) = \frac{2}{\sqrt{\pi}} \int_0^{x/\sqrt{2}} e^{-t^2} dt \tag{16}$$

is the error function.