PHYS 3160 HOMEWORK ASSIGNMENT 03
 DUE DATE FEBRUARY 17, 2020

Instructor: Dr. Daniel Erenso
Name: \qquad

Mandatory problems: 1 \& 3
Student signature: \qquad

Comment: \qquad

$\mathrm{P} \#$	1	2	3	4	5	Score
Score	$/$	$/$	$/$	$/$	$/$	$/ 100$

1. Consider a system consisting of two masses m_{1} and m_{2} connected by three three springs with spring constant k_{1}, k_{2}, and k_{2} as shown in Fig. 1.

Figure 1: Two masses and three different springs.
The masses can slide on a horizontal, frictionless surface. The springs are at their unstretched/uncompressed lengths when the masses are at its equilibrium positions. At $t=0$, the masses are displaced from its equilibrium positions by the amounts x_{10} and x_{20} and released from rest.
(a) Find the kinetic energy, the potential energy, and the Lagrangian. Using the Euler-Lagrange equation derive the equations of motion for each masses and express the equations using matrices

$$
\left[\begin{array}{l}
\ddot{x}_{1} \tag{1}\\
\ddot{x}_{2}
\end{array}\right]=M\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

(b) Let's assume that two atoms have nearly the same mass (i.e. $m_{1} \simeq m_{2}=m$) and,

$$
\begin{equation*}
k_{1}=5 k, k_{2}=2 k, k_{3}=2 k \tag{2}
\end{equation*}
$$

Using Similarity Transformation find the Eigenvalues and Eigenvectors for the matrix M.
(c) For the two masses find the displacements $\left(x_{1}(t)\right.$ and $\left.x_{2}(t)\right)$ and speeds $\left(\dot{x}_{1}(t)\right.$ and $\left.\dot{x}_{2}(t)\right)$
(e) Find the propagator matrix.
(f) Describe the Normal Modes of Vibration of the atoms.
2.
(a) Prove that

$$
\begin{equation*}
B(q, p)=B(p, q) \tag{3}
\end{equation*}
$$

(b) Express the integrals

$$
\begin{equation*}
I_{1}=\int_{0}^{1} \frac{x^{4}}{\sqrt{1-x^{2}}} d x, \quad I_{2}=\int_{0}^{\pi} \sin ^{3}(\theta) \cos (\theta) d \theta \tag{4}
\end{equation*}
$$

as beta functions and then write each beta functions in terms of the Gamma functions using the relation we derived in Example 6.2,

$$
\begin{equation*}
B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)} \tag{5}
\end{equation*}
$$

When possible use the Gamma function formulas such as

$$
\begin{equation*}
\Gamma(p)=\int_{0}^{\infty} x^{p-1} e^{-x} d x, \quad \Gamma(p+1)=p \Gamma(p), \Gamma(1 / 2)=\sqrt{\pi} \tag{6}
\end{equation*}
$$

to write an exact answer in terms of $\pi, \sqrt{2}$, etc.
(c) Applying the result in Example 11.1 show that the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2} / a} d x=\sqrt{a \pi} \tag{7}
\end{equation*}
$$

for $a>0$.
3. Using Stirling's formula evaluate
(a)

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\frac{\Gamma\left(n+\frac{3}{2}\right)}{\sqrt{n} \Gamma(n+1)}\right] \tag{8}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\frac{(2 n)!\sqrt{n}}{2^{2 n}(n!)^{2}}\right] \tag{9}
\end{equation*}
$$

4. The integral

$$
\begin{equation*}
\int_{x}^{\infty} u^{p-1} e^{-u} d u=\Gamma(p, x) \tag{10}
\end{equation*}
$$

is called an incomplete Gamma function. Note that for $x=0$, you find the Gamma function

$$
\begin{equation*}
\int_{0}^{\infty} u^{p-1} e^{-u} d u=\Gamma(p) \tag{11}
\end{equation*}
$$

By repeated integration find several terms of the asymptotic series for $\Gamma(p, x)$.
NB: I found

$$
\begin{gather*}
\Gamma(p, x)=\int_{x}^{\infty} u^{p-1} e^{-u} d u \\
=x^{p-1} e^{-x}\left[1+(p-1) x^{-1}+(p-1)(p-2) x^{-2}+(p-1)(p-2)(p-3) x^{-3} \ldots\right] \tag{12}
\end{gather*}
$$

5. Using the Gamma and Beta function formulas show that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d y}{(1+y) \sqrt{y}}=\pi \tag{13}
\end{equation*}
$$

6.

(a) Prove that the error function

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \tag{14}
\end{equation*}
$$

is an odd function.
(b) Show that

$$
\begin{equation*}
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t=\frac{1}{2}+\frac{1}{2} \operatorname{erf}(x / \sqrt{2}) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{erf}(x / \sqrt{2})=\frac{2}{\sqrt{\pi}} \int_{0}^{x / \sqrt{2}} e^{-t^{2}} d t \tag{16}
\end{equation*}
$$

is the error function.

