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1. For the same pendulum in Example 11.5

(a) Use the Euler-Lagrange equation to find the equation of motion for the mass, m.

(b) The resulting equation is a none-linear differential equation. Show that this equation for small amplitude of
oscillation gives a homogenous linear second order differential equation. By solving this equation show that
the period of oscillation is given by same expression.

T = 2π

√
l

g
, (1)

Solution:

(a) For the mass, m, the kinetic energy is

KE =
1

2
m
(
θ̇l
)2

(2)

and the gravitational potential energy is

PE = mgl(1− cos (θ)). (3)

Then using the Lagrangian

L = KE − PE = 1

2
m
(
θ̇l
)2
−mgl(1− cos (θ)), (4)

The Euler-Lagrange equation
∂

∂t

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0, (5)

becomes

d

dt

(
∂

∂θ̇

(
1

2
m
(
θ̇l
)2
−mgl(1− cos (θ))

))
− ∂

∂θ

(
1

2
m
(
θ̇l
)2
−mgl(1− cos (θ))

)
= 0, (6)

which gives
d

dt
mθ̇l2 +mgl sin (θ) = 0⇒ d2θ

dt2
+
g

l
sin (θ) = 0, (7)

(b) For small angle θ, we have
sin (θ) ' θ (8)

so that the differential equation becomes
d2θ

dt2
+ ω2θ = 0, (9)

where

ω =

√
g

l
. (10)

The solution to the differential equation is given by

θ (t) = A cos (ωt) +B sin (ωt) (11)

If the pendulum initially displaced an angle α and then released, we have

θ (0) = α⇒ A = α,
dθ (t)

dt
= −Aω sin (ωt) + ωB cos (ωt)⇒ dθ (0)

dt
= 0⇒ B = 0 (12)

so that
θ (t) = α cos (ωt) = α cos (ωt) . (13)

For one period, T , we must have

θ (t) = θ (t+ T )⇒ α cos (ωt) = α cos (ω (t+ T ))⇒ cos (ωt) = cos (ωt) cos (ωT )− sin (ωt) sin (ωT ) . (14)

This equality holds only when

cos (ωT ) = 1, sin (ωT ) = 0⇒ ωT = 2π ⇒ T =
2π

ω
= 2π

√
l

g
(15)

2



2. Prove the relations
δ (x) = δ (−x) , δ (ax) = 1

a
δ (x) ,

Solution: The Delta function is defined by one of its properties

∞∫
−∞

σ (x) dx = 1 (16)

Let’s consider the integral

I =

∞∫
−∞

σ (−x) dx (17)

so that introducing the transformation of variable defined by

y = −x⇒

 x = −y ⇒ dx = −dy,
x =∞⇒ y = −∞,
x = −∞⇒ y =∞,

(18)

one can write

I =

∞∫
−∞

σ (−x) dx =
−∞∫
∞

σ (y) (−dy) =
∞∫
−∞

σ (y) dy = 1 (19)

according to the property of the Dirac delta function. Therefore

∞∫
−∞

σ (−x) dx = 1 =
∞∫
−∞

σ (x) dx⇒ σ (−x) = σ (x)

Let’s consider the integral

I =

∞∫
−∞

δ (ax) dx

so that introducing the transformation of variable

y = ax⇒

 x = y
a ⇒ dx = 1

ady,
x =∞⇒ y =∞,

x = −∞⇒ y = −∞,
(20)

one can write

I =

∞∫
−∞

δ (ax) dx =

∞∫
−∞

1

a
δ (y) dy (21)

but we know that the variable of integration is a dummy variable and one can rewrite this equation as

I =

∞∫
−∞

δ (ax) dx =

∞∫
−∞

1

a
δ (x) dx (22)

and there follows that
δ (ax) =

1

a
δ (x) (23)

3. Show that
∞∫
−∞

dδ (x)

dx
f (x) dx = − df (x)

dx

∣∣∣∣
x=0

(24)
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Solution: Let’s consider one of the properties of the Dirac Delta function

I =

∞∫
−∞

δ (x) g (x) dx = g (0) . (25)

Suppose

g (x) =
df (x)

dx

one can rewrite Eq. (25) as
∞∫
−∞

δ (x)
df (x)

dx
dx =

df (x)

dx

∣∣∣∣
x=0

. (26)

Using integration by parts, we have

δ (x) f (x)|∞−∞ −
∞∫
−∞

dδ (x)

dx
f (x) dx =

df (x)

dx

∣∣∣∣
x=0

. (27)

so that using the property of the Dirac Delta function

δ (x) =

{
0, x 6= 0
∞, x = 0

⇒ δ (x) f (x)|∞−∞ = 0

one finds
∞∫
−∞

dδ (x)

dx
f (x) dx = − df (x)

dx

∣∣∣∣
x=0

. (28)

4. From introductory physics, the electric potential, V (~r) , due to a point charge located at the origin (0, 0, 0) (i.e.
r = 0) is given by

V (~r) =
1

4πε0

q

r
. (29)

Show that the volume charge density, ρ (~r) , for this point charge can be expressed in terms of the Dirac delta
function

ρ (~r) =
dq

dτ
= qσ (~r) = qσ (x)σ (y)σ (z) , (30)

where dq is an infinitessimal charge in an infinitesimal volume dτ.

Solution: The electric potential, dV (~r) of an infinitessimal charge dq′ in a volume dτ ′ as shown in Fig. can be
expressed as

dV (~r) =
1

4πε0

dq′

|~r − ~r′| =
1

4πε0

ρ (~r′) dτ ′

|~r − ~r′| ⇒ V (~r) =
1

4πε0

∫∫∫
V

ρ (~r′) dτ ′

|~r − ~r′| , (31)

Using spherical coordinates, we can write

V (~r) =
1

4πε0

∞∫
0

π∫
0

2π∫
0

ρ (~r′) r′2 sin (θ) dr′dθ′dϕ′

|~r − ~r′| (32)

This potential for a point charge becomes

1

4πε0

∞∫
0

π∫
0

2π∫
0

ρ (~r′) r′2 sin (θ) dr′dθ′dϕ′

|~r − ~r′| =
1

4πε0

q

r

⇒
∞∫
0

π∫
0

2π∫
0

1

|~r − ~r′|
ρ (~r′)

q
r′2 sin (θ) dr′dθ′dϕ′ =

1

r
. (33)
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From the property of the Dirac Delta function

∞∫
0

π∫
0

2π∫
0

f (~r′)σ (~r′ − ~r0) r′2 sin
(
θ′
)
dr′dθ′dϕ′ = f (~r0) (34)

one can easily find

f (~r′) =
1

|~r − ~r′| , σ (~r
′ − ~r0) =

ρ (~r′)

q

⇒ f (~r0) =
1

|~r − ~r0|
=
1

r
⇒ ~r0 = 0 (35)

which leads to
ρ (~r′)

q
= σ (~r′)⇒ ρ (~r′) = qσ (~r′) . (36)

where dq an infinitessimal charge in an infinitesimal volume dτ.

5. The volume charge density, ρ (~r) , of a point charge, q, placed at a point on the x-axis, ~r0 = ax̂, can be expressed
as

ρ (~r) = qσ (~r − ~r0) , (37)

where σ (~r) is the Dirac Delta function. Show that the electric potential, V (~r) , due to this point charge is
given by

V (~r) =
1

4πε0

q

|~r − ~r0|
=

q

4πε0

1√
(x− a)2 + y2 + z2

. (38)

The electric potential for a volume charge distribution is given by

V (~r) =
1

4πε0

∫∫∫
V

ρ (~r′) dτ ′

|~r − ~r′| , (39)

where ~r′ is the position of the infinitesimal charge dq′ = ρ (~r′) dτ ′, in an infinitesimal volume dτ ′, and ρ (~r′)
is the charge density in the volume V .

Solution: Using the given charge density and the expression for the potential, one can write

V (~r) =
q

4πε0

∫∫∫
V

σ (~r′ − ~r0) dτ ′
|~r − ~r′| , (40)

In Cartesian coordinates, we have

~r′ = x′x̂+ y′ŷ + z′ẑ, ~r = xx̂+ yŷ + zẑ, ~r0 = ax̂

⇒ |~r − ~r′| =
√
(x− x′)2 + (y − y′)2 + (z − z′)2 (41)

and
σ (~r′ − ~r0) = σ (x′ − x0)σ (y′ − y0)σ (z′ − z0) = σ (x′ − a)σ (y′)σ (z′)

so that

V (~r) =
q

4πε0

∞∫
−∞

∞∫
−∞

∞∫
−∞

σ (x′ − a)σ (y′)σ (z′) dx′dy′dz′√
(x− x′)2 + (y − y′)2 + (z − z′)2

=
q

4πε0

∞∫
−∞

σ (z′) dz′
∞∫
−∞

σ (y′) dy′
∞∫
−∞

f (x′, y′, z′)σ (x′ − a) dx′, (42)
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where
f (x′, y′, z′) =

1√
(x− x′)2 + (y − y′)2 + (z − z′)2

. (43)

Now applying the property of the Dirac Delta function

∞∫
−∞

f (x)σ (x− a) dx = f (a) (44)

one can easily see that

∞∫
−∞

f (x′, y′, z′)σ (x′) dx′ =

∞∫
−∞

f (x′, y′, z′)σ (x′ − a) dx′

= f (a, y′, z′) =
1√

(x− a)2 + (y − y′)2 + (z − z′)2
. (45)

The electric potential becomes

V (~r) =
q

4πε0

∞∫
−∞

σ (z′ − a) dz′
∞∫
−∞

f (0, y′, z′)σ (y′) dy′. (46)

Once again using the property of the Dirac delta function, we have

∞∫
−∞

f (0, y′, z′)σ (y′) dy′ =

∞∫
−∞

f (a, y′, z′)σ (y′ − 0) dy′ = f (a, 0, z′) =
1√

(x− a)2 + y2 + (z − z′)2
. (47)

and the expression for potential reduces to

V (~r) =
q

4πε0

∞∫
−∞

f (a, 0, z′)σ (z′) dz′. (48)

One last time using the Dirac delta function property, we find for the potential

V (~r) =
q

4πε0

∞∫
−∞

f (0, 0, z′)σ (z′) dz′ =
q

4πε0
f (0, 0, 0)⇒ V (~r) =

q

4πε0

1√
(x− a)2 + y2 + z2

. (49)

6. Show that

δ [(x− x1) (x− x2)] =
δ (x− x1) + δ (x− x2)

|x1 − x2|
(50)

Solution: Introducing the transformation of variable

(x− x1) (x− x2) = y ⇒ x =
x1 + x2 + 2

[
y + 1

4 (x1 − x2)
2
]1/2

2

dy = dx (x− x2) + dx (x− x1)⇒ dx =
dy

2x− (x2 + x1)
=

dy

2
[
y + 1

4 (x1 − x2)
2
]1/2 (51)

we may write
∞∫
−∞

δ [(x− x1) (x− x2)] dx =
∞∫
−∞

f (y) δ (y) dy (52)
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where
f (y) =

1

2
[
y + 1

4 (x1 − x2)
2
]1/2 . (53)

Using the property of the Delta function

∞∫
−∞

f (y)σ (y) dy = f (0) (54)

we find
∞∫
−∞

δ [(x− x1) (x− x2)] dx =
1

2
[
1
4 (x1 − x2)

2
]1/2 = 1

|x1 − x2|
(55)

Now lets consider the integral

I =

∞∫
−∞

[
δ (x− x1) + δ (x− x2)

x1 − x2

]
dx (56)

which we can be easily shown that

I =

∞∫
−∞

σ (x− x1)
|x1 − x2|

dx+

∞∫
−∞

σ (x− x2)
|x1 − x2|

dx =
2

|x1 − x2|
(57)
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