PHYS 3160 HOMEWORK ASSIGNMENT 04
 DUE DATE FEBRUARY 24, 2020

Instructor: Dr. Daniel Erenso
Name: \qquad

Mandatory problems: 2 \& 5
Student signature: \qquad

Comment: \qquad

$\mathrm{P} \#$	1	2	3	4	5	Score
Score	$/$	$/$	$/$	$/$	$/$	$/ 100$

1. For the same pendulum in Example 11.5
(a) Use the Euler-Lagrange equation to find the equation of motion for the mass, m.
(b) The resulting equation is a none-linear differential equation. Show that this equation for small amplitude of oscillation gives a homogenous linear second order differential equation. By solving this equation show that the period of oscillation is given by same expression.

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{l}{g}} \tag{1}
\end{equation*}
$$

Solution:

(a) For the mass, m, the kinetic energy is

$$
\begin{equation*}
K E=\frac{1}{2} m(\dot{\theta} l)^{2} \tag{2}
\end{equation*}
$$

and the gravitational potential energy is

$$
\begin{equation*}
P E=m g l(1-\cos (\theta)) \tag{3}
\end{equation*}
$$

Then using the Lagrangian

$$
\begin{equation*}
\mathcal{L}=K E-P E=\frac{1}{2} m(\dot{\theta} l)^{2}-m g l(1-\cos (\theta)) \tag{4}
\end{equation*}
$$

The Euler-Lagrange equation

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\right)-\frac{\partial \mathcal{L}}{\partial \theta}=0 \tag{5}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial}{\partial \dot{\theta}}\left(\frac{1}{2} m(\dot{\theta} l)^{2}-m g l(1-\cos (\theta))\right)\right)-\frac{\partial}{\partial \theta}\left(\frac{1}{2} m(\dot{\theta} l)^{2}-m g l(1-\cos (\theta))\right)=0 \tag{6}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{d}{d t} m \dot{\theta} l^{2}+m g l \sin (\theta)=0 \Rightarrow \frac{d^{2} \theta}{d t^{2}}+\frac{g}{l} \sin (\theta)=0 \tag{7}
\end{equation*}
$$

(b) For small angle θ, we have

$$
\begin{equation*}
\sin (\theta) \simeq \theta \tag{8}
\end{equation*}
$$

so that the differential equation becomes

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}+\omega^{2} \theta=0 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=\sqrt{\frac{g}{l}} \tag{10}
\end{equation*}
$$

The solution to the differential equation is given by

$$
\begin{equation*}
\theta(t)=A \cos (\omega t)+B \sin (\omega t) \tag{11}
\end{equation*}
$$

If the pendulum initially displaced an angle α and then released, we have

$$
\begin{equation*}
\theta(0)=\alpha \Rightarrow A=\alpha, \frac{d \theta(t)}{d t}=-A \omega \sin (\omega t)+\omega B \cos (\omega t) \Rightarrow \frac{d \theta(0)}{d t}=0 \Rightarrow B=0 \tag{12}
\end{equation*}
$$

so that

$$
\begin{equation*}
\theta(t)=\alpha \cos (\omega t)=\alpha \cos (\omega t) \tag{13}
\end{equation*}
$$

For one period, T, we must have

$$
\begin{equation*}
\theta(t)=\theta(t+T) \Rightarrow \alpha \cos (\omega t)=\alpha \cos (\omega(t+T)) \Rightarrow \cos (\omega t)=\cos (\omega t) \cos (\omega T)-\sin (\omega t) \sin (\omega T) \tag{14}
\end{equation*}
$$

This equality holds only when

$$
\begin{equation*}
\cos (\omega T)=1, \sin (\omega T)=0 \Rightarrow \omega T=2 \pi \Rightarrow T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{l}{g}} \tag{15}
\end{equation*}
$$

2. Prove the relations

$$
\delta(x)=\delta(-x), \delta(a x)=\frac{1}{a} \delta(x)
$$

Solution: The Delta function is defined by one of its properties

$$
\begin{equation*}
\int_{-\infty}^{\infty} \sigma(x) d x=1 \tag{16}
\end{equation*}
$$

Let's consider the integral

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} \sigma(-x) d x \tag{17}
\end{equation*}
$$

so that introducing the transformation of variable defined by

$$
y=-x \Rightarrow\left\{\begin{array}{c}
x=-y \Rightarrow d x=-d y \tag{18}\\
x=\infty \Rightarrow y=-\infty \\
x=-\infty \Rightarrow y=\infty
\end{array}\right.
$$

one can write

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} \sigma(-x) d x=\int_{\infty}^{-\infty} \sigma(y)(-d y)=\int_{-\infty}^{\infty} \sigma(y) d y=1 \tag{19}
\end{equation*}
$$

according to the property of the Dirac delta function. Therefore

$$
\int_{-\infty}^{\infty} \sigma(-x) d x=1=\int_{-\infty}^{\infty} \sigma(x) d x \Rightarrow \sigma(-x)=\sigma(x)
$$

Let's consider the integral

$$
I=\int_{-\infty}^{\infty} \delta(a x) d x
$$

so that introducing the transformation of variable

$$
y=a x \Rightarrow\left\{\begin{array}{c}
x=\frac{y}{a} \Rightarrow d x=\frac{1}{a} d y \tag{20}\\
x=\infty \Rightarrow y=\infty \\
x=-\infty \Rightarrow y=-\infty
\end{array}\right.
$$

one can write

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} \delta(a x) d x=\int_{-\infty}^{\infty} \frac{1}{a} \delta(y) d y \tag{21}
\end{equation*}
$$

but we know that the variable of integration is a dummy variable and one can rewrite this equation as

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} \delta(a x) d x=\int_{-\infty}^{\infty} \frac{1}{a} \delta(x) d x \tag{22}
\end{equation*}
$$

and there follows that

$$
\begin{equation*}
\delta(a x)=\frac{1}{a} \delta(x) \tag{23}
\end{equation*}
$$

3. Show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d \delta(x)}{d x} f(x) d x=-\left.\frac{d f(x)}{d x}\right|_{x=0} \tag{24}
\end{equation*}
$$

Solution: Let's consider one of the properties of the Dirac Delta function

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} \delta(x) g(x) d x=g(0) \tag{25}
\end{equation*}
$$

Suppose

$$
g(x)=\frac{d f(x)}{d x}
$$

one can rewrite Eq. (25) as

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta(x) \frac{d f(x)}{d x} d x=\left.\frac{d f(x)}{d x}\right|_{x=0} \tag{26}
\end{equation*}
$$

Using integration by parts, we have

$$
\begin{equation*}
\left.\delta(x) f(x)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} \frac{d \delta(x)}{d x} f(x) d x=\left.\frac{d f(x)}{d x}\right|_{x=0} \tag{27}
\end{equation*}
$$

so that using the property of the Dirac Delta function

$$
\delta(x)=\left\{\left.\begin{array}{ll}
0, & x \neq 0 \\
\infty, & x=0
\end{array} \Rightarrow \delta(x) f(x)\right|_{-\infty} ^{\infty}=0\right.
$$

one finds

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d \delta(x)}{d x} f(x) d x=-\left.\frac{d f(x)}{d x}\right|_{x=0} \tag{28}
\end{equation*}
$$

4. From introductory physics, the electric potential, $V(\vec{r})$, due to a point charge located at the origin $(0,0,0)$ (i.e. $r=0$) is given by

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \tag{29}
\end{equation*}
$$

Show that the volume charge density, $\rho(\vec{r})$, for this point charge can be expressed in terms of the Dirac delta function

$$
\begin{equation*}
\rho(\vec{r})=\frac{d q}{d \tau}=q \sigma(\vec{r})=q \sigma(x) \sigma(y) \sigma(z) \tag{30}
\end{equation*}
$$

where $d q$ is an infinitessimal charge in an infinitesimal volume $d \tau$.
Solution: The electric potential, $d V(\vec{r})$ of an infinitessimal charge $d q^{\prime}$ in a volume $d \tau^{\prime}$ as shown in Fig. can be expressed as

$$
\begin{equation*}
d V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{d q^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|}=\frac{1}{4 \pi \epsilon_{0}} \frac{\rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \Rightarrow V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \iiint_{V} \frac{\rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{31}
\end{equation*}
$$

Using spherical coordinates, we can write

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{\rho\left(\vec{r}^{\prime}\right) r^{\prime 2} \sin (\theta) d r^{\prime} d \theta^{\prime} d \varphi^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{32}
\end{equation*}
$$

This potential for a point charge becomes

$$
\begin{align*}
& \frac{1}{4 \pi \epsilon_{0}} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{\rho\left(\vec{r}^{\prime}\right) r^{\prime 2} \sin (\theta) d r^{\prime} d \theta^{\prime} d \varphi^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \\
& \Rightarrow \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|} \frac{\rho\left(\vec{r}^{\prime}\right)}{q} r^{\prime 2} \sin (\theta) d r^{\prime} d \theta^{\prime} d \varphi^{\prime}=\frac{1}{r} \tag{33}
\end{align*}
$$

From the property of the Dirac Delta function

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} f\left(\vec{r}^{\prime}\right) \sigma\left(\vec{r}^{\prime}-\vec{r}_{0}\right) r^{2} \sin \left(\theta^{\prime}\right) d r^{\prime} d \theta^{\prime} d \varphi^{\prime}=f\left(\vec{r}_{0}\right) \tag{34}
\end{equation*}
$$

one can easily find

$$
\begin{align*}
f\left(\vec{r}^{\prime}\right) & =\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}, \sigma\left(\vec{r}^{\prime}-\vec{r}_{0}\right)=\frac{\rho\left(\vec{r}^{\prime}\right)}{q} \\
& \Rightarrow f\left(\vec{r}_{0}\right)=\frac{1}{\left|\vec{r}-\vec{r}_{0}\right|}=\frac{1}{r} \Rightarrow \vec{r}_{0}=0 \tag{35}
\end{align*}
$$

which leads to

$$
\begin{equation*}
\frac{\rho\left(\vec{r}^{\prime}\right)}{q}=\sigma\left(\vec{r}^{\prime}\right) \Rightarrow \rho\left(\vec{r}^{\prime}\right)=q \sigma\left(\vec{r}^{\prime}\right) . \tag{36}
\end{equation*}
$$

where $d q$ an infinitessimal charge in an infinitesimal volume $d \tau$.
5. The volume charge density, $\rho(\vec{r})$, of a point charge, q, placed at a point on the x-axis, $\vec{r}_{0}=a \hat{x}$, can be expressed as

$$
\begin{equation*}
\rho(\vec{r})=q \sigma\left(\vec{r}-\vec{r}_{0}\right), \tag{37}
\end{equation*}
$$

where $\sigma(\vec{r})$ is the Dirac Delta function. Show that the electric potential, $V(\vec{r})$, due to this point charge is given by

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{\left|\vec{r}-\vec{r}_{0}\right|}=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{(x-a)^{2}+y^{2}+z^{2}}} \tag{38}
\end{equation*}
$$

The electric potential for a volume charge distribution is given by

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \iiint_{V} \frac{\rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{39}
\end{equation*}
$$

where \vec{r}^{\prime} is the position of the infinitesimal charge $d q^{\prime}=\rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}$, in an infinitesimal volume $d \tau^{\prime}$, and $\rho\left(\vec{r}^{\prime}\right)$ is the charge density in the volume V.

Solution: Using the given charge density and the expression for the potential, one can write

$$
\begin{equation*}
V(\vec{r})=\frac{q}{4 \pi \epsilon_{0}} \iiint_{V} \frac{\sigma\left(\vec{r}^{\prime}-\vec{r}_{0}\right) d \tau^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{40}
\end{equation*}
$$

In Cartesian coordinates, we have

$$
\begin{align*}
\vec{r}^{\prime} & =x^{\prime} \hat{x}+y^{\prime} \hat{y}+z^{\prime} \hat{z}, \vec{r}=x \hat{x}+y \hat{y}+z \hat{z}, \vec{r}_{0}=a \hat{x} \\
& \Rightarrow\left|\vec{r}-\vec{r}^{\prime}\right|=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}} \tag{41}
\end{align*}
$$

and

$$
\sigma\left(\vec{r}^{\prime}-\vec{r}_{0}\right)=\sigma\left(x^{\prime}-x_{0}\right) \sigma\left(y^{\prime}-y_{0}\right) \sigma\left(z^{\prime}-z_{0}\right)=\sigma\left(x^{\prime}-a\right) \sigma\left(y^{\prime}\right) \sigma\left(z^{\prime}\right)
$$

so that

$$
\begin{align*}
V(\vec{r}) & =\frac{q}{4 \pi \epsilon_{0}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sigma\left(x^{\prime}-a\right) \sigma\left(y^{\prime}\right) \sigma\left(z^{\prime}\right) d x^{\prime} d y^{\prime} d z^{\prime}}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}} \\
& =\frac{q}{4 \pi \epsilon_{0}} \int_{-\infty}^{\infty} \sigma\left(z^{\prime}\right) d z^{\prime} \int_{-\infty}^{\infty} \sigma\left(y^{\prime}\right) d y^{\prime} \int_{-\infty}^{\infty} f\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \sigma\left(x^{\prime}-a\right) d x^{\prime} \tag{42}
\end{align*}
$$

where

$$
\begin{equation*}
f\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\frac{1}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}} . \tag{43}
\end{equation*}
$$

Now applying the property of the Dirac Delta function

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) \sigma(x-a) d x=f(a) \tag{44}
\end{equation*}
$$

one can easily see that

$$
\begin{align*}
& \int_{-\infty}^{\infty} f\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \sigma\left(x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} f\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \sigma\left(x^{\prime}-a\right) d x^{\prime} \\
& \quad=f\left(a, y^{\prime}, z^{\prime}\right)=\frac{1}{\sqrt{(x-a)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}} \tag{45}
\end{align*}
$$

The electric potential becomes

$$
\begin{equation*}
V(\vec{r})=\frac{q}{4 \pi \epsilon_{0}} \int_{-\infty}^{\infty} \sigma\left(z^{\prime}-a\right) d z^{\prime} \int_{-\infty}^{\infty} f\left(0, y^{\prime}, z^{\prime}\right) \sigma\left(y^{\prime}\right) d y^{\prime} \tag{46}
\end{equation*}
$$

Once again using the property of the Dirac delta function, we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} f\left(0, y^{\prime}, z^{\prime}\right) \sigma\left(y^{\prime}\right) d y^{\prime}=\int_{-\infty}^{\infty} f\left(a, y^{\prime}, z^{\prime}\right) \sigma\left(y^{\prime}-0\right) d y^{\prime}=f\left(a, 0, z^{\prime}\right)=\frac{1}{\sqrt{(x-a)^{2}+y^{2}+\left(z-z^{\prime}\right)^{2}}} \tag{47}
\end{equation*}
$$

and the expression for potential reduces to

$$
\begin{equation*}
V(\vec{r})=\frac{q}{4 \pi \epsilon_{0}} \int_{-\infty}^{\infty} f\left(a, 0, z^{\prime}\right) \sigma\left(z^{\prime}\right) d z^{\prime} \tag{48}
\end{equation*}
$$

One last time using the Dirac delta function property, we find for the potential

$$
\begin{equation*}
V(\vec{r})=\frac{q}{4 \pi \epsilon_{0}} \int_{-\infty}^{\infty} f\left(0,0, z^{\prime}\right) \sigma\left(z^{\prime}\right) d z^{\prime}=\frac{q}{4 \pi \epsilon_{0}} f(0,0,0) \Rightarrow V(\vec{r})=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{(x-a)^{2}+y^{2}+z^{2}}} \tag{49}
\end{equation*}
$$

6. Show that

$$
\begin{equation*}
\delta\left[\left(x-x_{1}\right)\left(x-x_{2}\right)\right]=\frac{\delta\left(x-x_{1}\right)+\delta\left(x-x_{2}\right)}{\left|x_{1}-x_{2}\right|} \tag{50}
\end{equation*}
$$

Solution: Introducing the transformation of variable

$$
\begin{gather*}
\left(x-x_{1}\right)\left(x-x_{2}\right)=y \Rightarrow x=\frac{x_{1}+x_{2}+2\left[y+\frac{1}{4}\left(x_{1}-x_{2}\right)^{2}\right]^{1 / 2}}{2} \\
d y=d x\left(x-x_{2}\right)+d x\left(x-x_{1}\right) \Rightarrow d x=\frac{d y}{2 x-\left(x_{2}+x_{1}\right)}=\frac{d y}{2\left[y+\frac{1}{4}\left(x_{1}-x_{2}\right)^{2}\right]^{1 / 2}} \tag{51}
\end{gather*}
$$

we may write

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta\left[\left(x-x_{1}\right)\left(x-x_{2}\right)\right] d x=\int_{-\infty}^{\infty} f(y) \delta(y) d y \tag{52}
\end{equation*}
$$

where

$$
\begin{equation*}
f(y)=\frac{1}{2\left[y+\frac{1}{4}\left(x_{1}-x_{2}\right)^{2}\right]^{1 / 2}} \tag{53}
\end{equation*}
$$

Using the property of the Delta function

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(y) \sigma(y) d y=f(0) \tag{54}
\end{equation*}
$$

we find

$$
\begin{equation*}
\int_{-\infty}^{\infty} \delta\left[\left(x-x_{1}\right)\left(x-x_{2}\right)\right] d x=\frac{1}{2\left[\frac{1}{4}\left(x_{1}-x_{2}\right)^{2}\right]^{1 / 2}}=\frac{1}{\left|x_{1}-x_{2}\right|} \tag{55}
\end{equation*}
$$

Now lets consider the integral

$$
\begin{equation*}
I=\int_{-\infty}^{\infty}\left[\frac{\delta\left(x-x_{1}\right)+\delta\left(x-x_{2}\right)}{x_{1}-x_{2}}\right] d x \tag{56}
\end{equation*}
$$

which we can be easily shown that

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} \frac{\sigma\left(x-x_{1}\right)}{\left|x_{1}-x_{2}\right|} d x+\int_{-\infty}^{\infty} \frac{\sigma\left(x-x_{2}\right)}{\left|x_{1}-x_{2}\right|} d x=\frac{2}{\left|x_{1}-x_{2}\right|} \tag{57}
\end{equation*}
$$

