PHYS 3160 HOMEWORK ASSIGNMENT 04
 DUE DATE FEBRUARY 24, 2020

Instructor: Dr. Daniel Erenso
Name: \qquad

Mandatory problems: 2 \& 5
Student signature: \qquad

Comment: \qquad

$\mathrm{P} \#$	1	2	3	4	5	Score
Score	$/$	$/$	$/$	$/$	$/$	$/ 100$

1. For the same pendulum in Example 11.5
(a) Use the Euler-Lagrange equation to find the equation of motion for the mass, m .
(b) The resulting equation is a none-linear differential equation. Show that this equation for small amplitude of oscillation gives a homogenous linear second order differential equation. By solving this equation show that the period of oscillation is given by same expression.

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{l}{g}} \tag{1}
\end{equation*}
$$

2. Prove the relations

$$
\delta(x)=\delta(-x), \delta(a x)=\frac{1}{a} \delta(x)
$$

3. Show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d \delta(x)}{d x} f(x) d x=-\left.\frac{d f(x)}{d x}\right|_{x=0} \tag{2}
\end{equation*}
$$

4. Form introductory physics, the electric potential, $V(\vec{r})$, due to a point charge located at the origin $(0,0,0)$ (i.e. $r=0$) at a point in space described by the position vector, \vec{r}, is given by

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \tag{3}
\end{equation*}
$$

Show that the volume charge density, $\rho(\vec{r})$, for this point charge can be expressed in terms of the Dirac delta function

$$
\begin{equation*}
\rho(\vec{r})=\frac{d q}{d \tau}=q \sigma(\vec{r})=q \sigma(x) \sigma(y) \sigma(z) \tag{4}
\end{equation*}
$$

where $d q$ an infinitessimal charge in an infinitesimal volume $d \tau$.
5. The volume charge density, $\rho(\vec{r})$, of a point charge, q, placed at a point on the x-axis, $\vec{r}_{0}=a \hat{x}$, can be expressed as

$$
\begin{equation*}
\rho(\vec{r})=q \sigma\left(\vec{r}-\vec{r}_{0}\right), \tag{5}
\end{equation*}
$$

where $\sigma(\vec{r})$ is the Dirac Delta function. Show that the electric potential, $V(\vec{r})$, due to this point charge is given by

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{\left|\vec{r}-\vec{r}_{0}\right|}=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{(x-a)^{2}+y^{2}+z^{2}}} \tag{6}
\end{equation*}
$$

The electric potential for a volume charge distribution is given by

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \iiint_{V} \frac{\rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|} \tag{7}
\end{equation*}
$$

where \vec{r}^{\prime} is the position of the infinitesimal charge $d q^{\prime}=\rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}$, in an infinitesimal volume $d \tau^{\prime}$, and $\rho\left(\vec{r}^{\prime}\right)$ is the charge density in the volume V.
6. Show that

$$
\begin{equation*}
\delta\left[\left(x-x_{1}\right)\left(x-x_{2}\right)\right]=\frac{\delta\left(x-x_{1}\right)+\delta\left(x-x_{2}\right)}{x_{1}-x_{2}} \tag{8}
\end{equation*}
$$

