PHYS 3160 HOMEWORK ASSIGNMENT 05 DUE DATE MARCH 02, 2020

Instructor: Dr. Daniel Erenso
Name: \qquad

Mandatory problems: $1 \& 5$
Student signature: \qquad

Comment: \qquad

$\mathrm{P} \#$	1	2	3	4	5	Score
Score	$/$	$/$	$/$	$/$	$/$	$/ 100$

1. For the following differential equations find solutions using (a) series substitution method and (b) elementary method (any of the methods you were introduced in Theoretical Physics I: Part I.
(a)

$$
\begin{equation*}
\frac{d x(t)}{d t}-3 t^{2} x(t)=0 \tag{1}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\frac{d^{2} x(t)}{d t^{2}}-2 \frac{d x(t)}{d t}+x(t)=0 \tag{2}
\end{equation*}
$$

2. Show that the set of functions defined by

$$
\begin{equation*}
f_{n}(t)=\exp \left(\frac{i n t}{l}\right) \tag{3}
\end{equation*}
$$

for $n=0, \pm 1, \pm 2, \pm 3 \ldots$ form an orthogonal set of functions for all $t \varepsilon(-l, l)$. If we want to make these set of functions an orthonormal set of functions, what must be the normalization factor.
3. We have shown that the solution to the Legendre differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+l(l+1) y=0 \tag{4}
\end{equation*}
$$

is given by

$$
\begin{align*}
y_{e}(x) & =a_{0}\left\{1-\frac{l(l+1)}{2!} x^{2}+\frac{l(l+1)(l-2)(l+3)}{4!} x^{4}\right. \\
& \left.-\frac{l(l+1)(l-2)(l+3)(l-4)(l+5)}{6!} x^{6}+\ldots\right\} \tag{5}
\end{align*}
$$

for even l and by

$$
\begin{align*}
y_{o}(x)= & a_{1}\left\{x-\frac{(l-1)(l+2)}{3!} x^{3}+\frac{(l-1)(l+2)(l-3)(l+4)}{5!} x^{5}\right. \\
& \left.-\frac{(l-1)(l+2)(l-3)(l+4)(l-5)(l+6)}{7!} x^{7}+\ldots\right\} \tag{6}
\end{align*}
$$

for odd l. Using these equations find the solutions for $l=4$ and 5 . By imposing the condition that $y(x)$ should be one at $x=1$, determine the constants a_{0} and a_{1} in each case and write the expressions for the Legendre polynomials, $P_{4}(x)$ and $P_{5}(x)$. Compare the results with the results in the note or with results you determined using computer.
4.
(a) Using Leibniz' rule

$$
\begin{equation*}
\frac{d^{N}}{d t^{N}}(u v)=\sum_{n=0}^{N}\binom{N}{n}\left(\frac{d^{n} u}{d t^{n}}\right)\left(\frac{d^{N-n} v}{d t^{N-n}}\right) \tag{7}
\end{equation*}
$$

find the derivative

$$
\begin{equation*}
f(t)=\frac{d^{6}}{d t^{6}}\left(t^{2} \sin (t)\right) \tag{8}
\end{equation*}
$$

(b) Use the Rodrigues' formula

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \tag{9}
\end{equation*}
$$

to determine $P_{n}(x)$ for $n=0,1,2,3$, and 4 . Check your result with what I have in the Note.
5.
(a) The Legendre Polynomials can be generated using

$$
\begin{equation*}
P_{l}(x)=\left.\frac{1}{l!} \frac{d^{l}}{d h^{l}} \phi(x, h)\right|_{h=0} \tag{10}
\end{equation*}
$$

for the function

$$
\begin{equation*}
\phi(x, h)=\left(1-2 x h+h^{2}\right)^{-1 / 2} \tag{11}
\end{equation*}
$$

Show this is true for $l=3$ and $l=4$.
(b) Use the recursion relation

$$
l P_{l}(x)=(2 l-1) x P_{l-1}(x)-(l-1) P_{l-2}(x)
$$

and the values of $P_{0}(x)$ and $P_{1}(x)$ to find $P_{l}(x)$ for $l=2,3,4,5$, and 6 .
(c) You often see Legendre polynomials in Electricity and magnetism. Such as in the description of charge distribution on a aspherical surface. For example, a surface charge density could be expressed as

$$
\begin{equation*}
\sigma=\frac{q}{4 \pi R^{2}}\left[\cos (\theta)-\cos ^{3}(\theta)\right] \tag{12}
\end{equation*}
$$

where q is the total charge on the surface and R is the radius of the sphere. Suppose we replace, $x=\cos (\theta)$, the charge density can be expressed as

$$
\begin{equation*}
\sigma=\frac{q}{4 \pi R^{2}}\left(x-x^{3}\right) \tag{13}
\end{equation*}
$$

Express this charge density using Legendre polynomials.
6.
(a) Re-drive the recursion relation for the Legendre polynomials that is derived in the note
(b) Use Leibniz' Rule to find

$$
\begin{equation*}
\frac{d^{8}}{d x^{8}}\left(x^{2} e^{2 x}\right) \tag{14}
\end{equation*}
$$

Note: Both (a) and (b) have been worked out in the lecture note. Do not directly copy. Try to understand how it is done and do it on your own.

