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Problem 1-4 Electrostatic: A ring dipole: Consider a ring with radius R siting on the x-z plane centered about
the origin as shown in Fig. 1. Suppose the angle between a vector, ~r′ describing a point on the ring and the z-axis is
ϕ′ and the angle between a vector ~r describing a point in space and the y-axis is θ. The projection of the vector ~r
on the x-z plane subtends an angle ϕ from the z-axis. The ring carries a positive charge q on one side and a negative
charge −q on the other side. These charges are uniformly distributed on both sides.

Figure 1: A simplified model for a trapped red blood cell. The cell is modeled a linear dielectric disk. When it is
placed in an electric field, ~E (~r) , there will be a polarization. We assume the bound charges produced the the two
sides of the cell are uniformly distributed.

1. For the set-up shown in the Fig. Noting that the Cartesian coordinate for the vector, ~r,

x = r sin (θ) sin (ϕ) , y = r cos (θ) , z = r sin (θ) cos (ϕ) (1)

and for the vector, ~r′,
x′ = R sin (ϕ′) , y′ = 0, z′ = R cos (ϕ′) (2)

show that
|~r − ~r′| =

√
r2 +R2 − 2rR sin (θ) cos (ϕ− ϕ′) (3)

Solution: Noting that

~r = r sin (θ) sin (ϕ) x̂+ r cos (θ) ŷ + r sin (θ) cos (ϕ) ẑ

~r′ = R sin (ϕ′) x̂+R cos (ϕ′) ẑ (4)

we have

|~r − ~r′| =
√
(x− x′)2 + (y − y′)2 + (y − y′)2

=
[
(r sin (θ) sin (ϕ)−R sin (ϕ′))2 + r2 cos2 (θ) + (r sin (θ) cos (ϕ)−R cos (ϕ′))2

]1/2
=
[
r2 sin2 (θ) sin2 (ϕ) +R2 sin2 (ϕ′)− 2rR sin (θ) sin (ϕ) sin (ϕ′) + r2 cos2 (θ)

+r2 sin2 (θ) cos2 (ϕ) +R2 cos2 (ϕ′)− 2rR sin (θ) cos (ϕ) cos (ϕ′)
]1/2

=
√
r2 +R2 − 2rR sin (θ) (cos (ϕ) cos (ϕ′) + sin (ϕ) sin (ϕ′))

=
√
r2 +R2 − 2rR sin (θ) cos (ϕ− ϕ′) (5)

where we used the relation
cos (ϕ± ϕ′) = cos (ϕ) cos (ϕ′)∓ sin (ϕ) sin (ϕ′) . (6)

2. Find the charge densities for the two sides of the ring.
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Solution: The linear charge density

λ =
charge
length

⇒
[

λ+ =
q
πR , for 0 < ϕ′ < π

λ− = − q
πR , for π < ϕ′ < 2π

(7)

3. Show that the potential at a point in space described by the vector ~r can be expressed as

V (~r) =
q

4π2ε0
√
r2 +R2

[∫ π

0

dϕ′√
1− u cos (ϕ− ϕ′)

−
∫ π

0

dφ√
1 + u cos (ϕ− φ)

]
, (8)

where

u =
2rR sin (θ)

r2 +R2
. (9)

Solution: The electric potential for a linear charge density is determined by

V (~r) =
1

4πε0

∫
Length

λdr′

|~r − ~r′| (10)

where dr′ is an infinitessimal length over on the ring which is given by

dr′ =
√
dx′ + dy′ =

√
R2 sin2 (ϕ′) (dϕ′)

2
+R2 cos2 (ϕ′) (dϕ′)

2
= Rdϕ′. (11)

Using results in parts (a), (b), and the expression for dr′, one can express the potential as

V (~r) =
1

4πε0

∫ 2π

0

λRdϕ′√
r2 +R2 − 2rR sin (θ) cos (ϕ− ϕ′)

=
1

4πε0

∫ π

0

q
πRRdϕ

′√
r2 +R2 − 2rR sin (θ) cos (ϕ− ϕ′)

+

∫ 2π

π

q
πRRdϕ

′√
r2 +R2 − 2rR sin (θ) cos (ϕ− ϕ′)

=
q

4π2ε0

{∫ π

0

dϕ′√
r2 +R2 − 2rR sin (θ) cos (ϕ− ϕ′)

−
∫ 2π

π

dϕ′√
r2 +R2 − 2rR sin (θ) cos (ϕ− ϕ′)

}
(12)

For the second integral in the above expression we introduce the transformation defined by

φ′ = ϕ′ − π ⇒ cos (ϕ− ϕ′) = cos
(
ϕ− φ′ − π

)
= − cos

(
ϕ− φ′

)
dϕ′ = dφ′, and ϕ′ = π ⇒ φ′ = 0, ϕ′ = 2π ⇒ φ′ = π, (13)

so that we may write the potential as

V (~r) =
q

4π2ε0


∫ π

0

dϕ′√
r2 +R2 − 2rR sin (θ) cos (ϕ− ϕ′)

−
∫ π

0

dφ′√
r2 +R2 + 2rR sin (θ) cos

(
ϕ− φ′

)
 (14)

which can be put in the form

V (~r) =
q

4π2ε0
√
r2 +R2


∫ π

0

dϕ′√
1− 2rR

r2+R2 sin (θ) cos (ϕ− ϕ′)
−
∫ π

0

dϕ′√
1 + 2rR

r2+R2 sin (θ) cos (ϕ− ϕ′)

 , (15)

where we replaced the dummy variable φ′ by another dummy variable ϕ′. Introducing the variable

u =
2rR sin (θ)

r2 +R2
(16)

the potential becomes

V (~r) =
q

4π2ε0
√
r2 +R2

[∫ π

0

dϕ′√
1− u cos (ϕ− ϕ′)

−
∫ π

0

dφ√
1 + u cos (ϕ− φ)

]
. (17)
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4. Using series expansion show that

(a) the potential in (3) can be put in the form

V (~r) =
q

4π2ε0
√
r2 +R2

∞∑
n=0

(
−1/2
n

)
un
∫ π

0

((−1)n − 1) cosn (ϕ− ϕ′) dϕ′, (18)

where (
−1/2
n

)
=
− 12
(
− 12 − 1

) (
− 12 − 2

) (
− 12 − 3

)
...
(
− 12 − n+ 1

)
n!

(19)

(b) Show that the potential in (a) near the axis where sin (θ) << 1 the potential can be approximated as

V (~r) ' − qR

π2ε0

r sin (θ) sin (ϕ)

(r2 +R2)
3/2

. (20)

(c) Express the result in (b) using Cartesian coordinates

(d) Find the approximate relation for the potential near the center of the ring.

(e) Find the electric field near the axis of the ring.

Solution:

(a) Applying the series expansion

(1 + x)p =

∞∑
n=0

(
p
n

)
xn = 1 + px+

p(p− 1)
2!

x2 + ...convergent for all |x| < 1 (21)

we have

([1− u cos (ϕ− ϕ′)]−1/2 =
∞∑
n=0

(
−1/2
n

)
(−1)n un cosn (ϕ− ϕ′)

= 1− 1
2
(−u cos (ϕ− ϕ′)) +

− 12 (−
1
2 − 1)
2!

u2 cos2 (ϕ− ϕ′) + ...

⇒ ([1− u cos (ϕ− ϕ′)]−1/2 = 1 + 1
2
u cos (ϕ− ϕ′) + 5

8
u2 cos2 (ϕ− ϕ′) + ... (22)

and

([1 + u cos (ϕ− ϕ′)]−1/2 =
∞∑
n=0

(
−1/2
n

)
un cosn (ϕ− ϕ′)

= 1− 1
2
(u cos (ϕ− ϕ′)) +

− 12 (−
1
2 − 1)
2!

u2 cos2 (ϕ− ϕ′) + ...

⇒ ([1− u cos (ϕ− ϕ′)]−1/2 = 1− 1
2
u cos (ϕ− ϕ′) + 5

8
u2 cos2 (ϕ− ϕ′) + ... (23)

so that the potential can be expressed as

V (~r) =
q

4π2ε0
√
r2 +R2

∞∑
n=0

(
−1/2
n

)
un
∫ π

0

[(−1)n − 1] cosn (ϕ− ϕ′) dϕ′ (24)

Noting that

(−1)n − 1 =
[

0 for n = 0, 2, 4..
−2, for n = 1, 3, 5..

(25)

and expressing the odd numbers as 2m+ 1, where m = 0, 1, 2..., one can rewrite the potential as

V (~r) = − q

2π2ε0
√
r2 +R2

∞∑
m=0

(
−1/2
2m+ 1

)
u2m+1

∫ π

0

cos2m+1 (ϕ− ϕ′) dϕ′ (26)
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(b) We note that Near the axis where sin (θ) << 1, since u << 1, we can keep only the none zero first order term
in the series which is for m = 0,

V (~r) ' − q

2π2ε0
√
r2 +R2

(
−1/2
1

)
u

∫ π

0

cos (ϕ− ϕ′) dϕ′ = q

2π2ε0
√
r2 +R2

(
−1/2
1

)
u sin (ϕ− ϕ′)

∣∣∣∣π
0

⇒ V (~r) ' q

2π2ε0
√
r2 +R2

(
−1/2
1

)
u [sin (ϕ− π)− sin (ϕ)] (27)

Noting that
sin (ϕ− π)− sin (ϕ) = −2 sin (ϕ) , (28)

and according to Eq. (19) (
−1/2
1

)
= −1

2
, (29)

one finds for the potential

V (~r) ' qu sin (ϕ)

2π2ε0
√
r2 +R2

=
qR

π2ε0

r sin (θ) sin (ϕ)

(r2 +R2)
3/2

(30)

where we replaced

u =
2rR sin (θ)

r2 +R2
(31)

(c) Recalling that
x = r sin (θ) sin (ϕ) , y = r cos (θ) , z = r sin (θ) cos (ϕ) (32)

and near the axis sin (θ) << 1, we have

r =
√
x2 + y2 + z2 ' y, r sin (θ) sin (ϕ) = x

so that

V (~r) ' qR

π2ε0

x

(y2 +R2)
3/2

. (33)

(d) Near the center of the ring where r << R and sin (θ) ' 1, we have

u ' 2rR

r2 +R2
' 2r
R

(34)

and still u << 1, our approximation for the potential is valid. But this time since

sin (θ) ' 1, cos (θ) ' 0

we have
x = r sin (ϕ) , y = 0, z = r cos (ϕ) (35)

and near the axis sin (θ) << 1, we have

r =
√
x2 + y2 + z2 '

√
x2 + z2,

and the potential is given by

V (~r) ' qR

π2ε0

x

(x2 + z2 +R2)
3/2

(36)

(e) Using the potential

V (~r) ' qR

π2ε0

x

(y2 +R2)
3/2

. (37)
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the electric field components in Cartesian coordinates are

Ex (~r) = −
∂

∂x

[
qR

π2ε0

x

(y2 +R2)
3/2

]
= − p

π2ε0 (y2 +R2)
3/2

,

Ey (~r) = −
∂

∂y

[
qR

π2ε0

x

(y2 +R2)
3/2

]
=

3p

π2ε0

xy

(y2 +R2)
5/2

,

Ez (~r) = −
∂

∂z

[
qR

π2ε0

x

(y2 +R2)
3/2

]
= 0. (38)

5. Magnetostatic

(a) A spherical shell, of radius R, carrying a uniform surface charge σ, is set spinning at angular velocity ω about
the z-axis. Find the vector potential and the magnetic field both inside and outside the sphere.

Hint: Rotate the position ~r where we want to determine the vector potential by an angle ψ in a counter clockwise
direction so that it coincides with the positive z−axis as shown in the figure below.

(b) Applying the result in part (a), find the magnetic field of a uniformly magnetized sphere of radius R and
magnetization, ~M =Mẑ .

Figure 2: Uniformly magnetized sphere.

Hint: Discuss what a uniform magnetization along the z direction mean in terms of the bound current density.

Solution:
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Figure 3: A rotated coordinate.

(a) Let’s rotate the position ~r where we want to determine the vector potential by an angle ψ in a counter clockwise
direction so that it coincides with the positive z−axis as shown in the figure below.
The angular frequency ~ω lies on the x− z plane and can be expressed as

~ω = ω sinψx̂+ ω cosψẑ.

The velocity of a charge q located at ~r′ = R sin θ′ cosϕ′ x̂ + R sin θ′ sinϕ′ŷ + R cos θ′ẑ on the surface of the
sphere can then be expressed as

~v = ~ω × ~r′ =

∣∣∣∣∣∣
x̂ ŷ ẑ

ω sinψ 0 ω cosψ
R sin θ′ cosϕ′ R sin θ′ sinϕ′ R cos θ′

∣∣∣∣∣∣
= −Rω cosψ sin θ′ sinϕ′x̂+Rω

(
cosψ sin θ′ cosϕ′ − sinψ cos θ′

)
ŷ +Rω sinψ sin θ′ sinϕ′ẑ. (39)

The surface current density will then be

~K ′ = σ~v = −σRω cosψ sin θ′ sinϕ′x̂+ σRω
(
cosψ sin θ′ cosϕ′ − sinψ cos θ′

)
ŷ

+σRω sinψ sin θ′ sinϕ′ẑ. (40)

Noting that
|~r − ~r′| =

√
R2 + r2 − 2rR cos θ′, da′ = R2 sin θ′dθ′dϕ′ (41)

the vector potential

~A =
µ0
4π

∫
sur

~K (r′)

|~r − ~r′|da
′ (42)

becomes

~A =
µ0σ

4π

−
π∫
0

2π∫
0

R3ω cosψ sin2 θ′ sinϕ′dθ′dϕ′√
R2 + r2 − 2rR cos θ′

x̂+

π∫
0

2π∫
0

R3ω
(
cosψ sin2 θ′ cosϕ′ − sinψ sin θ′ cos θ′

)√
R2 + r2 − 2rR cos θ′

dθ′dϕ′ŷ

+

π∫
0

2π∫
0

R3ω sinψ sin2 θ′ sinϕ′dθ′dϕ′√
R2 + r2 − 2rR cos θ′

ẑ

 . (43)

Because of the integrals
2π∫
0

sinϕ′dϕ′ =

2π∫
0

cosϕ′dϕ′ = 0 (44)
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the terms involving sinϕ′ and cosϕ′ vanish when we integrate over ϕ′. Hence

~A = −µ0σ
4π

π∫
0

2π∫
0

R3ω sinψ sin θ′ cos θ′dθ′dϕ′√
R2 + r2 − 2rR cos θ′

ŷ = −µ0σR
3ω sinψ

2

π∫
0

sin θ′ cos θ′dθ′√
R2 + r2 − 2rR cos θ′

ŷ. (45)

Introducing the transformation of variable defined by

u =
√
R2 + r2 − 2rR cos θ′ ⇒


cos θ′ = R2+r2−u2

2rR ,

sin θ′ cos θ′dθ′√
R2+r2−2rR cos θ′ =

(R2+r2−u2)du
2(rR)2

,

θ = 0⇒ u =
√
R2 + r2 − 2rR = |r −R| ,

θ = π ⇒ u =
√
R2 + r2 + 2rR = r +R,

(46)

we find

~A = −µ0σR
3ω sinψ

2

r+R∫
|r−R|

(
R2 + r2 − u2

)
du

2 (rR)
2 ŷ = −µ0σRω sinψ

4r2

[(
R2 + r2

)
u− u3

3

]r+R
|r−R|

ŷ

⇒ ~A = −µ0σRω sinψ
4r2

[(
R2 + r2

)
u− u3

3

]r+R
|r−R|

ŷ (47)

We need to consider two cases. The first is when we are outside the sphere (i.e. r > R ⇒ |r −R| = r − R),
which gives

~A = −µ0σRω sinψ
4r2

{[
R2 + r2 − (r +R)

2

3

]
(r +R)−

[
R2 + r2 − (r −R)

2

3

]
(r −R)

}
ŷ (48)

which can be simplified into

~A (~r) = −µ0σR
4ω sinψ

3r2
ŷ. (49)

The second case is when we are inside the sphere (i.e. r < R ⇒ |r −R| = − (r −R) , the vector potential
becomes

~A = −µ0σRω sinψ
4r2

{[
R2 + r2 − (r +R)

2

3

]
(r +R) +

[
R2 + r2 − (r −R)

2

3

]
(r −R)

}
ŷ (50)

which also can be simplified to give
~A (~r) = −µ0σRrω sinψ

3
ŷ. (51)

Therefore the vector potential is given by

~A =

{
−µ0σRrω sinψ3 ŷ r < R

−µ0σR
4ω sinψ
3r2 ŷ r > R

=

{
µ0σR
3 ~ω × ~r r < R

µ0σR
4

3r3 ~ω × ~r r > R
. (52)

where we used
~ω × ~r = −rω sinψŷ (53)

referring to Fig. 3

(b) To find the magnetic field we first need to find the vector potential due to the bound currents. Since the material
has a uniform magnetization the volume current density is zero

~Jb (~r) = ∇× ~M (~r) = 0.

The magnetization ~M pointing along the z direction, in spherical coordinates (Fig. 4, can be expressed as

~M =Mẑ =M cos (θ) r̂ −M sin (θ) θ̂
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Figure 4: The components of the magnetization in spherical coordinates.

and the normal unit vector to the area is
n̂ = r̂. (54)

Then the surface current

~Kb (~r) = ~M (~r)× n̂ =
(
M cos (θ) r̂ −M sin (θ) θ̂

)
× r̂

⇒ ~Kb (~r) =M sin (θ) ϕ̂. (55)

We recall from Example 5.11 the vector potential for a spherical shell of radius, R, with surface charge density,
σ, and spinning about the z axis with angular velocity ω, generates a surface current given by

~K = σ~v = σRω sin (θ) ϕ̂ (56)

which lead us to a vector potential given by

~A =

{
µ0σR
3 ωr sin (θ) ϕ̂ r < R

µ0σR
4

3r2 ω sin (θ) ϕ̂ r > R
. (57)

Comparing Eq. (55) with (56), we have σRω =M and the vector potential in Eq. (57) becomes

~A =

{
µ0M
3 r sin (θ) ϕ̂ r < R

µ0MR3

3r2 sin (θ) ϕ̂ r > R
. (58)

Then using the expression for the magnetic field in terms of the vector potential in spherical coordinates

~B(~r) = ∇×A = 1

r sin θ

[
∂

∂θ
(sin θAϕ)−

∂

∂ϕ
(Aθ)

]
r̂

+
1

r

[
1

sin θ

∂

∂ϕ
(Ar)−

∂

∂r
(rAϕ)

]
θ̂ +

1

r

[
∂

∂r
(rAθ)−

∂

∂θ
(Ar)

]
ϕ̂, (59)

inside the sphere (r < R), we find

~B(~r) =
1

r sin θ

[
∂

∂θ

(
sin θ

µ0M

3
r sin (θ)

)]
r̂ +

1

r

[
− ∂

∂r

(
r
µ0M

3
r sin (θ)

)]
θ̂

=
2µ0M

3

[
cos (θ) r̂ − sin (θ) θ̂

]
. (60)

Similarly, outside the sphere (r > R)

~B(~r) =
1

r sin θ

[
∂

∂θ

(
sin θ

µ0MR3

3r2
sin (θ)

)]
r̂ +

1

r

[
− ∂

∂r

(
r
µ0MR3

3r2
sin (θ)

)]
θ̂

⇒ ~B(~r) =
2µ0MR3

3r3
cos (θ) r̂ +

µ0MR3

3r3
sin (θ) θ̂. (61)
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In terms of the Magnetization vector

~M =Mẑ =M cos (θ) r̂ −M sin (θ) θ̂ ⇒M sin (θ) θ̂ =M cos (θ) r̂ − ~M, (62)

one can rewrite the magnetic field, inside the sphere, as

~B(~r) =
2µ0 ~M

3
(63)

and outside the sphere

~B(~r) =
2µ0MR3

3r3
cos (θ) r̂ +

µ0R
3

3r3

(
M cos (θ) r̂ − ~M

)
=
3µ0MR3 cos (θ) r̂ − µ0R3 ~M

3r3
⇒ ~B(~r) =

µ0R
3
((
3 ~M · r̂

)
r̂ − ~M

)
3r3

. (64)

Noting that for a sphere of radius R with a uniform magnetization ~M, in terms of the total magnetic dipole
moment, ~mtotal,

M =
mtotal
4
3πR

3
⇒ ~M =

~mtotal
4
3πR

3
. (65)

one can write the magnetic field outside the sphere as

~B(~r) =
µ0
4πr3

[(3~mtotal · r̂) r̂ − ~mtotal] . (66)
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