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1. A small loop of radius, b is held a distance z0 above the center of a larger loop with radius a. The small loop
carries a current, I1, in a clockwise direction and the larger loop carries a current, I2, in a counterclockwise
direction (both viewed from the top). The plane of the two loops are parallel and also perpendicular to the
z-axis. (See Fig.1)

Figure 1: Two circular current carrying wires.

(a) Find the flux through the little loop. (The little loop is so small and you may consider the field of the big loop
to be essentially constant.)

(b) Find the flux through the larger loop. (The little loop is so small that you may treat it as a magnetic dipole.)

(c) Find the mutual inductance and confirm that M12 = M21.

Solution:

(a) If a current I2 flows in the big loop, the magnetic field due to this current at a distance r from the center of the
loop is given by

~B (r) =
µ0I

2

a2

(a2 + r2)
(3/2)

ẑ, (1)

where a is the radius of the circular loop. Then the flux through the little loop is

Φ =

∫
~B · d~a =

(
µ0I

2

a2

(a2 + r2)
(3/2)

)
πb2 ⇒ Φ =

πµ0Ia
2b2

2 (b2 + z2)
(3/2)

. (2)

here the magnetic field is taken to be constant over the area of the little loop.

(b) The little loop is so small that it can be taken as a magnetic dipole and its magnetic field is expressible as

~B (r) =
µ0
4π

1

r3
(3 (~m · r̂) r̂ − ~m) ,

where (referring to the figure above)

r =
√
z2o + r′2 ⇒ r̂ =

~r

r
=
~r′ − zoẑ

r

and
d~a = 2πr′dr′ (−ẑ) .

Then flux becomes

Φ =

∫
~B · d~a =

µ0
4π

∫
1

(z2o + r′2)
(3/2)

[3 (~m · r̂) r̂ − ~m] · d~a.
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Noting that
~m = m (−ẑ) = I1πb

2 (−ẑ) , (3)

we have

~m · r̂ = I1πb
2 (−ẑ) ·

[
~r′ − zoẑ

r

]
and noting that in cylindrical coordinates

~r′ = r′ŝ⇒ r′ẑ · ŝ = 0,

we find

~m · r̂ =
I1πb

2zo
r

=
I1πb

2zo√
z2o + r′2

,

r̂ · d~a =

(
r′ŝ− zoẑ√
z2o + r′2

)
· (2πr′dr′) (−ẑ) =

2πzor
′dr′√

z2o + r′2
,

~m · d~a = I1πb
2(−ẑ) · (2πr′dr′) (−ẑ) = 2I1π

2b2r′dr′.

The magnetic flux can then be expressed as

Φ =
µ0
4π

∫
1

(z2o + r′2)
(3/2)

[3 (~m · r̂) r̂ − ~m] · d~a

=
µ0
4π

∫
1

(z2o + r′2)
(3/2)

[
3
I1πb

2zo√
z2o + r′2

· 2πzor
′dr′√

z2o + r′2
− 2I1π

2b2r′dr′

]

=
µ0
4π

6I1π
2b2z2o

a∫
0

r′dr′

(z2o + r′2)
(5/2)

− 2I1π
2b2

a∫
0

r′dr′

(z2o + r′2)
(3/2)


=
µ0
4π

6I1π
2b2z2o

(
z2o + r′2

)−3
2

−3

∣∣∣∣∣∣
a

0

− 2I1π
2b2
(
z2o + r′2

)−1
2

−2

∣∣∣∣∣∣
a

0

 =
µ0
4π

2I1π
2b2
[
−z2o

(
z2o + a2

)−3
2 +

(
z2o + a2

)−1
2

]

=
πµ0I1b

2

2

[
1

(z2o + a2)
1
2

− z2o

(z2o + a2)
3
2

]
⇒ Φ =

πµ0I1a
2b2

2 (z2o + a2)
3
2

.

Which is exactly the same as the flux through the little loop as one should expect.
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(c) Noting that the flux through the little loop can be expressed as

Φ = MI

we find that

M12 = M21 = M =
πµ0a

2b2

2 (z2 + b2)
3
2

2. A long straight conductor carrying a current, I1, and ring of radius, a, carrying a current, I2, lie in the same
plane as shown in Fig. 2 (i.e. y-z plane). The distance between the wire and the center of the ring is b. Find
the mutual inductance M and force F between the two conductors.

Figure 2: A long wire and a circular loop on the y-z plane.

3. Griffi ths Problem 7.26

Sol:

(a) If we cut the toroid right at the center and look at the cross section, (just at one of the rectangular loops) it
looks like the following:
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The flux through a single rectangular loop due to the current in the straight wire is given by

Φ1 =

∫
~B · d~a

and using

B =
µ0I

2πs
, da = hds

we find

Φ1 =
µ0Ih

2π

b∫
a

ds

s
⇒ Φ1 =

µ0Ih

2π
ln

(
b

a

)
.

Then the total flux through the N turns becomes

ΦT = NΦ1 =
µ0NIh

2π
ln

(
b

a

)
.

The induced EMF

εin = −dΦT
dt
⇒ εin = −µ0Nh

2π
ln

(
b

a

)
dI

dt

Using I = I0 cos (ωt) , we find

εin =
µ0NI0ωh

2π
ln

(
b

a

)
sin (ωt)⇒ εin = 2.61× 10−4 sin (ωt) .

Then the current

Ir =
εin
R

=
µ0NI0ωh

2πR
ln

(
b

a

)
sin (ωt)⇒ I = 5.22× 10−7 sin (ωt) . (Eq. 1)

(b) If a current Ir flows in a toroid, then the magnetic field due to this current will be

B =

{
µ0NIr
2πS for a < s < b
0 outside

This field produces a "self" flux given by

ΦS = N

∫
~B · d~a =

µ0N
2Ir

2π

b∫
a

hds

s
⇒ ΦS =

µ0N
2Irh

2π
ln

(
b

a

)
Then the back EMF will be

εback = −dΦS
dt

= −µ0N
2h

2π
ln

(
b

a

)
dIr
dt
. (Eq. 2)

Using Eq. (1), we find
dIr
dt

=
µ0NI0ω

2h

2πR
ln

(
b

a

)
cos (ωt)
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so that the back EMF becomes

εback =
µ20N

3ω2h2

4π2R

[
ln

(
b

a

)]2
cos (ωt)⇒ εback = −2.74× 10−7 cos (ωt) .

Then the ratio of the back and direct (induced) EMTs will be

εback
εin

=

µ20N
3ω2h2

4π2R

[
ln
(
b
a

)]2
µ0NI0ωh

2π ln
(
b
a

) ⇒ εback
εin

=
µ0N

2ωh ln
(
b
a

)
2πR

= 1.05× 10−3

4. Griffi ths Problem 7.29

Sol: The energy stored in a magnetic field is given by

W =
1

2µ0

∫
B2dτ

where the magnetic field of a toroid is given by

B =

{
µ0NI
2πS for a < s < b
0 outside

The infinitesimal volume in the region a < s < b can be expressed as

dτ = 2πshds

Then the energy

W =
1

2µ0

b∫
a

(µ0)
2
N2I2h

(2π)
2
s2

2πshds⇒W =
µ0N

2I2h

4π

b∫
a

ds

s

⇒W =
µ0N

2I2h

4π
ln

(
b

a

)
.

Using the relation

W =
1

2
LI2 ⇒ L =

2W

I2
⇒ L =

µ0N
2h

4π
ln

(
b

a

)
which is exactly the same as Eq. (7.27)

5. Griffi ths Problem 7.32

Solution:

(a) To find the mutual inductance, first let’s find the flux through area ~a2 due to the magnetic field of a current I,
in the first loop. The loops are tiny and can be treated as a dipole with a dipole moment.

~m1 = I1~a1

~m2 = I2~a2

The magnetic field due to ~m1 at the position of the second loop can then be written as

~B1 =
µ0
4π

1

r3
[3 (~m1 · r̂) r̂ − ~m1] , ~B1 =

µ0I1
4π

1

r3
[3 (~a1 · r̂) r̂ − ~a1] .

The flux through the second loop

Φ2 =

∫
a2

~B1 · d~a2 ' ~B1 · ~a2 ⇒ Φ2 =
µ0I1
4π

1

r3
[3 (~a1 · r̂) (~a2 · r̂)− ~a1 · ~a2] .

6



But we also know

Φ2 = M12I2 ⇒M12 =
Φ2
I2

which leads to
M12 =

µ0
4πr3

[3 (~a1 · r̂) (~a2 · r̂)− ~a1 · ~a2] .

Similarly, the flux through loop 1 due to the current in loop 2, I2, can be written as

Φ1 = ~B2 · ~a1 =
µ0I2
4π

1

r3
[3 (~a2 · r̂) (~a1 · r̂)− ~a1 · ~a2]

Φ1 = M21I2 ⇒M21 =
µ0

4πr3
[3 (~a2 · r) (~a1 · r)− ~a1 · ~a2] = M12 = M

M21 =
µ0

4πr3
[3 (~a2 · r) (~a1 · r)− ~a1 · ~a2] = M12 = M (Eq. 1)

(b) The work done per unit time against the mutually induced EMF to keep the current I1 flowing in loop 1 can be
expressed as

dW

dt
= −εinI1 ⇒ dW = −εinI1dt

But we know that

εin = −M dI2
dt
.

Then

dW = M
dI2
dt
I1dt⇒W = M

I2∫
0

I1dI2 ⇒W = MI1I2.

and the energy, using Eq. (1), can be put in the form

W =
µ0

4πr3
[3 (I2~a2 · r̂) (I1~a1 · r̂)− (I1~a1) · (I2~a2)]

or
W =

µ0
4πr3

[3 (~m1 · r̂) (~m2 · r̂)− ~m1 · ~m2]

Which is the interaction energy of two dipoles.

6. Griffi ths Problem 7.33

Sol:
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