PHYS 4380 Midterm Exam
October 11, 2018

Instructor: Dr. Daniel Erenso Name:

Instructions and important notes

o This is Part I of the midterm exam and it consists of three problems worth 50
points. Problems 4 and 5 in Part II are the take-home part of the exam.

« Please pay attention to italicized or bold phrases.

 To receive full credit, your work must be clear and complete.

« Begin the solution of each problem on a new page. Do not use the back pages!
« The solutions to each problems must be presented in order.

« Please box in the final result to each part of the problems when it is appropriate.

« You must attach all the pages of this exam on top of the pages of your properly
ordered solutions.

YOU HAVE 85 MINUTES TO COMPLETE THIS TEST

Part I Part 11
Problem 1 2 3 4 5) Total
Score /20 /20 /10 /25 /25 /100




Solution:

(b)

In-class

. Provide a short and brief answer

Consider the vector in a complex Cartesian vector space

A=3)—43,
Suppose the unit vectors &, §, and 2 can be represented by |e1), |es), and |e3) . Express A and A* using Dirac
notation [3 pts]
|A) = 3lez) —4les) , = [(A]) = 3 (e2] — 4 (es]

Consider the two SG devices shown in the figure. The first device (SG-1) has none uniform magnetic field in
the x-direction and the second device (SG-2) has a non uniform magnetic field in the z-direction. A spin-half

Figure 1: Two SG devices. SG-1 magnetic field gradient is in the x-direction and for SG-2 the magnetic field gradient
is in the z-direction.

()

particle in a state |+X) is incident on SG-1.

(i) What is the probability of this particle exiting SG-1 in the state |+X).[2 pts]

Sol: It is one since the magnetic gradient is also in the x direction.

(ii) What is the probability of this particle exiting SG-1 in the state |—X) .[2 pts]

Sol: It is zero since the magnetic gradient is also in the x direction and can no change the state.

(iii.) Suppose the particle exiting the SG-1 in a |+X) state enters SG-2. What is the probability that this
particle exiting SG-2 in a state |—Z) . [2 pts]

Sol: It is 0.5 (50%) since the magnetic gradient is z direction that could change the state to |+Z) and |-Z) .

(iV) Suppose you rotated SG-2 about the y axis by 7/2, what would be the probability that the particle
exiting SG-2 is in a state |—X) . [2 pts]

Sol: It would be zero.
Suppose there are two particles of same type. Particle one is in a state described by the ket vector

[91) = c1la1) + c2 |ag)



and particle two in a state described by the ket vector
[93) = eerar) + eca az)

where the vectors {[a1), |az)} form an orthonormal set of basis vectors, ¢; and ¢ are complex constants and ¢
is a real constant. Let the operator A represent some measurable physical observable such that

Alay) = Ay |ar), Alag) = A |ag) .

Show that A .
<7/12| A |7/’2> = <7/11| A |7/’1> .

[4 pts]
Sol: Using the given state vector, we have
o) = € (c1|ar) + calaz)) = € [ihy)
= (Yol =€ |ar) +e 5 |az) = €7 (4

so that X ' - .
(Yol Alhy) = €% (1hy| Ae® |1hy) = (11| Alwy) .

(d) Explain briefly the similarities and differences of the two virtual SG experiments we discussed in class and
shown in the figures below. [5 pts]

Modified SGx

SGz SGz

Figure 2: Modified SGx device with both states (][+X) and |-X)) open.

Modified SGx

SGz

e SGz

Figure 3: Modified SGx apparatus with |+X) open and |—X) blocked.

Sol: Refer to the note

2.



I. The polarization state for a photon propagating in the z-direction is given by

1 2
9 =~ X+ /210,

Without using matrices,

(a) Determine the state |¢) in the |R) and |L) basis. [5 pts]

Sol: using the completeness relation, one can write

(1) (R +112) (L) (—ﬁ X+ |Y>>

7

|¥)

(IR) (R] X) +|L) (L] X)) + \/§<R> (R Y)+|L) (L] Y)).

V3
so that using
1 . 1 .
[R) = E(PQ +i[Y)), L) = 7 (1X) —i|Y))
1 ) 1 .
= (R]= E“X' —i(Y]), (L] = ﬁ(<X| +i(Y])
one finds
1 2
) = (IR)(R|+[L) (L) <_\/§ | X) + \/;|Y>>
= *%(|R>+|L>)*\/§(IR>*IL>)
- () m (- v8)
[¥) = cr|R) +ecr|L)
where

CR=—|—&=+—4=|,cL=| —=——&=

) (wﬁ ¢é> : <\/§ ¢é>

(b) Suppose 36000 photons each in a state |i) are incident on a black disk in one hour at a uniform rate. If
all the incident photons are totally absorbed by the disk with its normal to the surface in the z direction.
Find the magnitude of the net torque on the disk,

-

L
Cdt
[7.5 pts]

Sol: The net angular momentum

9 5 1 1\? 1 1\?
J = JR—JLZ(PR—PR)EZ(\CM —ICL\)FLZ —+—=] - [—=-—=

= J= 1 h= 4 h:2\3/§h:0.94h

VIS 32

Then the torque
N 36000 4 40

—J= h= h = 9.4h.
t 3600 /18 V18

!

becomes



IL.

Note: The magnitude of the angular momentum of a photon is h.

For a spin half particle in a the state
) =

without using matrices,

(a) express the state vector in S, basis [5 pts]

L 112) e |-2)]

S

2

Sol: using the completeness relation, one can write

[¥) (X)) (+ X[+ |=X) (=X])

Sl

2

so that using

1 1
) = 2= (42) £1-2)) = (£X] = 5 (+2] £ (-2)),
we find
9) = 5 ((HX) +1-X)) + € (4X) ~[-X))
(1 +e) (1—e)
- T+ 5 ex
9 =erix)+ L2 )
where ) .
e (e
2 T 2

S

7 [+2) + €% |-2)]

)

(b) find the expectation values <5'T> , <5’§> , and the uncertainty AS,. [7.5 pts]

Sol:

Noting that

(1 + ew) (1 + e_i“")

e (5) +le-r
()~ (s

(2 + e + e_w)

= Jei? (Z) tle | <_Z) _

(3)-

((+X) (+X| +2) + |-X) (—X| +2)) + 7 (|+X) (+X| -2Z) + |-X) (-X| —Z)))

(2 4+ 2cos(p)) _ 14cos (p)

2 _ _ _
e = 2 2 4 - 4 2
P = (1—e®) (1—e) (2—e¥—e) (2—2cos(p)) 1——cos(p)
b = 2 2 4 - 4 -T2

we find

N h
<Sz> = 5 cos (p)

. h?

2 _— —
&) = T

h? ho.

ASy = ([ (L—cos?(p)) = 5 sin ()




3. (a) Suppose the operator describing the y-component for the position of a particle is, ¢, and the operator for
the y-component of the momentum this particle is p,.The operators are given by

. L d o
pyz—zh@7y=y

derive the commutation relation for these two operators, [¢, §,] .and find the Heisenberg uncertainty rela-
tion for momentum and position. [5 pts]

(b) Using the commutation relation for p, and g you determined in the previous problem, for the operators &
and af, defined by

N mw . . 1 .
YTV e
atl = EA,Z 1 P

2h 2mwh’ "’

derive the commutation relation [a,a'] . [5 pts]



Part II: Take-home

4. A spin half particle is described by the state vector

W3 x)

1
|¢>:§|+X>+T

(a) Find the matrix representation of the state vector |¢) in the J,-basis and using matrix mechanics show
that |¢) is properly normalized. [5 pts]

(b) By directly using |£Z) expressed in terms of |[£X), find the matrix representation of the operator J, in
z-basis (J, basis).[5 pts]

(c) Determine the transformation matrix that changes the matrix representation for the operator J, in z-basis
(J. basis) to a matrix representation in x-basis (J, basis). [5 pts]

(d) Using matrices only find expectation values <jz> , <j2,2> , and the uncertainty AJ,. [10 pts]

Sol: (a) The matrix representation of the state vector |¢) in the J,-basis
a | _| X[y | _1 1
2 (=X v) 2| —iv3

1
V2

the matrix representation of the operator .J, in z-basis (.J, basis).

(b) Using

[+2Z) = 7= ([+X) £[-X))

+Z| Jy |+2) (+Z|L|—Z>}
~Z|Jo |HZ) (~Z|Js|-Z)

(+X|+ (= X])) o ([+X) +[-X))  ((+X]|+
) (+X]

Il
M N =
o~ o~ 1~
—

(
(+X| = (=X]) Jo (4 X) + =X +X| = (=X J, (J4+X) — |-X))
+Z| o |42y (+Z|Jy|-2) ] _1[E-k Ry RT R0 1
- ~Z|J, |+Z) <Z|JL|Z>}2{’3+Z 2—2}2{1 0}

A =TTAT
where
Y- {(bl{ﬂbﬁ (b1|/:1|b2)} A_{<a1|f‘}|a1> <a1|{1|a2>}
(Do Albr)  (ba| Alb2) |’ (az] Alay) (az| Alaz) |’
_ | (a1 b1) (a1] b2)
ro= [<a2|b1> <a2|b2>]

the transformation matrix, 7', that changes the matrix representation for the operator J, in z-basis (J.
basis= |a1) , |az)) to a matrix representation in x-basis (J, basis= |b1), |b2)) can be expressed as

(a1] b1)  (a1] b2) ]

. . <+Z\+X> <+Z|—X)
T{<ag|b1> {aa] ba)

- { (=21 +X) (2| -X)

so that using

1
|+X) = \ﬁ(|+Z>i|—Z>)
we find ) .
-zl 4]



(d) Noting that in the .J, basis

2 _ (+2|J.|+2) <+Z|@—Z>H<+le>}
(1) = (ol w2 | (0 PO
o\ B (+2| 2 |+2) <+ZJE—Z>H<+Z|¢>}
() = (wien w2 | P25 POE  EA
and
{<+Zw>} | HAGE0 2 0) | [ i
=Z1¥) (2| (3 1+X) + 58 |-X) e
= (W+2) W-2))=(35-2% H+:4)
{<+Z|JZ|+Z> <+Z|jZ|—Z>} B n[1 0}
(2| J.|+2) (-z|J.|-2) | — 2|0 -1
{<+Z|j§|+Z> <+Z|j3|_z>} B #{1 o}
(2| 2 |+2) (—Z|J%|-2) 4 [0 1
we have
¢ _ 1 V3 1 V3 i1 0 27\1/54';\/%
<Z> N (275_2ﬁ ﬁ+2\/§)§ 0 —1 1 i3
242 2
7 h 1 i3 1 i3 ﬁ—‘r;\/%
= <Z>:§(ﬁ_2\/§ Tﬁ+2\/§) _%+223
22
A h (/1 3 h(1 3
- <Z>‘2(8+8)2<8+8>‘0
and
A~ i ; h2 1 0 L+7f\/§
<JZ2> (21272£ 212+2£)4[0 1}[%3%]
242 2
A h2 i ; L_i_l\/g
> () =3 (3% &#J%)[f_%ﬁ]
22
. K2 /1 3 B2 /1 3 B2
- <Jz>_4<8+8)+4<8+8>_4
so that

5. A one dimensional quantum harmonic oscillator can be described by the operators (a',d) known as the Ladder
operators. These operators are related to position () and momentum (p) operators by

. mw , . 1 R
a = on + zmp,
al = mw. i 1 P
2h 2mwh

where m and w are real constants. Suppose the energy of a quantum harmonic oscillator is described by the
energy operator H = hw (de + %) . Let’s assume that there are only two energy eigenstates |0) (the ground

state) and |1) (the excited state) with corresponding eigen values %2 and 322 respectively. That means

N hw . 3hw
o) = "2 oy 1y = 2y



Sol:

The operator a lowers and a! raises the state by one like the angular momentum lowering and raising operators
J_ and J+ we studied in class. This means when these operators act on the two eigenstates, it gives the
following:

alo)y = 0, all
ato) = 1[1), af

Note: The eigenstates |0) and |1) form a complete orthonormal set of vectors.

(a) Express the position operator, Z, in terms of the ladder operators (af,a). [3 pts]

(b) Find the matrix representation of the energy H and the position Z operators (using the result in (a)) in
the |0) and |1) basis.[5 pts]

: . ( OLH ) (0] HI1)
H |0) and |1) ba51s( ALy (| )

) _ 0|2]1) (0|41
& [0) and |1) b( El{x{oi El}x{li >

(c) Determine the eigenvalues for the position operator & and show that the corresponding eigen vectors are
given by [7 pts]

z1) = 7 (10) +11))
|[z2) = ﬁ (10) = [1))
(d) The momentum operator p eigen states are found to be
1 ) _ b g
Ip) = =5 (100 +i]1)) and |pz) = == (10) = i[1).

Express these eigenstates in the |z1) and |x2) basis. [5 pts]

(e) Determine the matrix representation of the energy operator H in the z basis. [5 pts]

(a) The position operator, #, in terms of the ladder operators (af,a) can be expressed as

IS

(b) Find the matrix representation of the energy H and the position & operators (using the result in (a)) in
the |0) and |1) basis.[5 pts]

( (Ol [0) (0] F 1) ) _ ( (0] % [0) (0] 2 1) )
alf ) (a7 (1% jo) (1] 3 1)
0fj0) e

(O|H0) (O] F[1)\ [
:>(<1|ﬁ|0> <1|ﬁ|1>)_(zd1||0> 3w

0
1
= (i Gan )-(F &)

o~ o~

( (0] 2]0) (0] 1) ): h ( (0] (a+a') o) (0l (a+al)[1) )
(1[z]0) (1|2 (1) 2mw \ (1 (a+a')[0) (1] (a+af) 1)
(o[z]o) (o[z[1) \ _ /_h [ (0[a']o) (0lal1)
- ( (1[z]0) (1|2 (1) ) —V 2mw < (1[a']o) (1fal1) )
@0y (ofzf1) \ _ [ h_((0[1) (ofloy\_ [/ P (01
:><<133"|0> <1ae|1>>_ 2mw(<1||1> oy J 2mw(1 0)



(c) The eigen values are determined from

det e | = 0= A2 —— =0
_h Y 2mw
2mw
h h
= A= Ao = —4 ——
! omw’ 2 2mw

The corresponding eigen vectors, for A\; = 1/%

\/ 2mw

=
~Js
$|x1):a1(1)

using the normalization condition

o= (1) =5 000+
Similarly for \; = _\/%

_h B a

27;:&2 27:&; [a; } =0=a=—-0

2mw 2mw

using the normalization condition

oah =5 (1) = 5 10 - 1m)

(d) The momentum operator p eigen states are found to be
1 1
= —(|0)+4|1)) and =—(|0) —1|1)).
) = 75 (10) +§[1) and.[p2) = = (10} ~i[1)
Using the completeness relation for the position eigenstates, one can write

Ip1) = (Jo1) (z1] + [22) (22]) [P1) = (@1 P1) [71) + (22| P1) |72)
|p2) (|z1) (1| + |z2) (22]) Ip2) = (1] P2) [21) + (22| P2) |22)

so that using

@ilp) = (01+ 1) Z5— (0)+if1) = 5 (1+1)
(@alp) = (0= (1) Z5—= (0 +i1) = 5 (1 =)
@lp) = O+ () J5—=(0) —i1) = 5 (1 =)
(@alpa) = (01— (1) Z5 = (0) =i[1) = 5 (1+1)
we find
p) = 5[0+ (=) o],
) = S i)fo) + (14 ) )],

10



(e) Using the relation we derived in class

A =TYAT
where
;o [l Afbr) (bl Alb) _ [ (el Ala) (@] Alas)
4= {<b2A|b1> <b2|A|b2>}’A {<aQ|A|al> (0] A Jaa)
_ | (a1 b1) (a1] b2)
= [<a2|b1> <a2|b2>}‘
one can write
H =T'HT
where
po_ [ @l Hz) (@] Hzo)
= {<x2H|b1> <m2|H|x2>]’
_ (0] H |0) <0|f:f|1> (% o0
= <<1|Ff|o> <1|H|1>> (3 h)
_ | Ol z1) (0] z2)
g [<1|x1> <1|$2>]
Noting that
- O z1) (O za) | . | Ol 0)+]1)) (0] 7 (10) —[1))
- (83 -
(I @1) (1] z2) (1] 75 (10) +11)) (1] 5 (I0) = [1))
171 1 171 1
= T:2[1 1}:’TT:2[1 1}
we find

H =

11



Equations Page

e Some relations and constants

(AB)T = BfAf v= ;\—:,v = %,k: S k=—-n,0o=—(ny—ng)l
£X) = = [+2)£1-2),
) = Z+2)il-2)
h = h/2m=1.055x 107" J.s = 6.582 x 10~ %eV.s,c = 3.0 x 10%m/s
o A set of vectors {|a1),|az),|as),...|lan)} satisfying the condition
(aj lai) = di;

are known as an orthonormal set of vectors. For an orthonormal complete set of vector, the completeness

relation:
Z lan) (an| = 1.

n

e Figen value equation

M |7y = X[,
where X is the eigenvalue and |F) is the eigenvector. The matriz representation
My Mia Mg x x
My May  Mas y =AYy
M3 Msz Mss 2 2z
The eigenvalues are obtained from the condition
M11 - A M12 M13
Moy Moo — A Mo =0,
M3, Mz M3z — A

To find the eigenvectors we substitute the eigenvalues and solve the resulting equations.

e For a state vector N
) = Z cilai)
i=1

the average value (expectation value) and the standard deviation (uncertainty) for A
. N A A A \ 2
<A> = el ai = WA, (AA) - <A2> - <A> .
i=1

e The transformation equation from the basis {|a1),laz),...|an)} representation of the operator A to the basis
{|b1),|b2) , ... |bn')} representation

A =TTAT
where
o [ (bul Ay (ba] Albo) _ [ (a1l Alar) (a1] Alas)
A= L da i [ A= el 2l il |
_ | (a1[ b1) (a1| b2)
= [<a2|b1> <a2|b2>]'

e Two none commuting operators and the uncertainty relation:

[A, B] —iC' = (AA)? (AB)? > 2 <é>2.

12



