PHYS 4380 Quantum Mechanics I Homework Assignment 01Due date: September 06, 2018

Instructor: Dr. Daniel Erenso

Name: _____

Mandatory problems: 1 & 2

Student signature:

Student Comment:______

P #	1	2	3	4	5	Score	F. Score
Score	/	/	/	/	/	/100	/100

1. Consider the following two vectors in a complex Cartesian vector space

$$\vec{A} = 3\hat{x} - 4i\hat{y}, \vec{B} = 6i\hat{x} + 8\hat{z}$$

Suppose the unit vectors \hat{x}, \hat{y} , and \hat{z} can be represented by $|e_1\rangle, |e_2\rangle$, and $|e_3\rangle$

- (a) Express these vectors \vec{A} and \vec{B} using Dirac notation (i.e. $|A\rangle$ and $|A\rangle$)
- (b) Find components of these vectors using Dirac notation

$$A_i = \langle e_i | A \rangle, B_i = \langle e_i | B \rangle$$

for i = 1, 2, and 3

- (c) Find the component of vector \vec{A} along the direction of vector \vec{B} using Dirac notation.
- 2. Consider the ket vector

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left[|a_1\rangle + i |a_2\rangle \right]$$

where the vectors $\{\ket{a_1}, \ket{a_2}\}$ form an orthonormal set of vectors

- (a) Find the bra vector
- (b) Find $\langle a_1 | \psi \rangle$ and $\langle \psi | a_1 \rangle$
- (c) Find the probability amplitude $\langle a_2 | \psi \rangle$ and $\langle \psi | a_2 \rangle$
- (d) What is the resulting value for k given by

$$k = \langle a_1 | \psi \rangle \langle \psi | a_1 \rangle + \langle a_2 | \psi \rangle \langle \psi | a_2 \rangle$$

3. Consider the a photon described by its polarization state

$$\left|\psi\right\rangle = \frac{e^{i\theta}}{\sqrt{2}}\left[\left|\uparrow\right\rangle + i\left|\longrightarrow\right\rangle\right]$$

where vectors $|\uparrow\rangle$ and $|\longrightarrow\rangle$ represent vertical and horizontal polarization states and form an orthonormal set of vectors

- (a) Find the bra vector
- (b) Find $\langle \uparrow | \psi \rangle$ and $\langle \psi | \uparrow \rangle$
- (c) Find the probability amplitude $\langle \longrightarrow | \psi \rangle$ and $\langle \psi | \longrightarrow \rangle$
- (d) What is the resulting value for k given by

$$k = \left<\uparrow \left|\psi\right> \left<\psi \right|\uparrow\right> + \left<\longrightarrow \left|\psi\right> \left<\psi \right|\longrightarrow\right>$$

4. Townsend 1.1

5. Townsend 1.2