PHYS 4380 Quantum Mechanics I

Homework Assignment 01

Due date: September 06, 2018
Instructor: Dr. Daniel Erenso
Name: \qquad

Mandatory problems: $1 \& 2$
Student signature: \qquad

Student Comment: \qquad

[^0]| P \# | 1 | 2 | 3 | 4 | 5 | Score | F. Score |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| Score | $/$ | $/$ | $/$ | $/$ | $/$ | $/ 100$ | $/ 100$ |

1. Consider the following two vectors in a complex Cartesian vector space

$$
\vec{A}=3 \hat{x}-4 i \hat{y}, \vec{B}=6 i \hat{x}+8 \hat{z}
$$

Suppose the unit vectors \hat{x}, \hat{y}, and \hat{z} can be represented by $\left|e_{1}\right\rangle,\left|e_{2}\right\rangle$, and $\left|e_{3}\right\rangle$
(a) Express these vectors \vec{A} and \vec{B} using Dirac notation (i.e. $|A\rangle$ and $|A\rangle$)
(b) Find components of these vectors using Dirac notation

$$
A_{i}=\left\langle e_{i} \mid A\right\rangle, B_{i}=\left\langle e_{i} \mid B\right\rangle
$$

for $i=1,2$, and 3
(c) Find the component of vector \vec{A} along the direction of vector \vec{B} using Dirac notation.
2. Consider the ket vector

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left[\left|a_{1}\right\rangle+i\left|a_{2}\right\rangle\right]
$$

where the vectors $\left\{\left|a_{1}\right\rangle,\left|a_{2}\right\rangle\right\}$ form an orthonormal set of vectors
(a) Find the bra vector
(b) Find $\left\langle a_{1} \mid \psi\right\rangle$ and $\left\langle\psi \mid a_{1}\right\rangle$
(c) Find the probability amplitude $\left\langle a_{2} \mid \psi\right\rangle$ and $\left\langle\psi \mid a_{2}\right\rangle$
(d) What is the resulting value for k given by

$$
k=\left\langle a_{1} \mid \psi\right\rangle\left\langle\psi \mid a_{1}\right\rangle+\left\langle a_{2} \mid \psi\right\rangle\left\langle\psi \mid a_{2}\right\rangle
$$

3. Consider the a photon described by its polarization state

$$
|\psi\rangle=\frac{e^{i \theta}}{\sqrt{2}}[|\uparrow\rangle+i|\longrightarrow\rangle]
$$

where vectors $|\uparrow\rangle$ and $|\longrightarrow\rangle$ represent vertical and horizontal polarization states and form an orthonormal set of vectors
(a) Find the bra vector
(b) Find $\langle\uparrow \mid \psi\rangle$ and $\langle\psi \mid \uparrow\rangle$
(c) Find the probability amplitude $\langle\longrightarrow \mid \psi\rangle$ and $\langle\psi \mid \longrightarrow\rangle$
(d) What is the resulting value for k given by

$$
k=\langle\uparrow \mid \psi\rangle\langle\psi \mid \uparrow\rangle+\langle\longrightarrow \mid \psi\rangle\langle\psi \mid \longrightarrow\rangle
$$

4. Townsend 1.1

5. Townsend 1.2

[^0]:

