PHYS 4380 Quantum Mechanics I

Homework Assignment 05
Due date: October 9, 2018
Instructor: Dr. Daniel Erenso
Name:

Mandatory problems: $1 \& 5$
Student signature: \qquad

Student Comment: \qquad
\qquad

Problem \#	1	2	3	4	5	Score
Score	$/$	$/$	$/$	$/$	$/$	$/ 100$

1. Townsend 3.1, 3.8
2. Townsend 3.9
3. Townsend 3.10
4. Suppose we rotated the vector $\vec{A}=\left(A_{x}, A_{y}, A_{z}\right)$ by an angle φ about the y -axis and found a new vector $\overrightarrow{A^{\prime}}=\left(A_{x}^{\prime}, A_{y}^{\prime}, A_{z}^{\prime}\right)$. The projection of the vector \vec{A} on the x-z plane makes an angle θ from the positive z-axis (try to make 3D vectors visualization like the one in Fig.?? in my note). .Show that the rotation matrix is given by

$$
R(\varphi j)=\left[\begin{array}{ccc}
\cos (\varphi) & 0 & \sin (\varphi) \tag{1}\\
0 & 1 & 0 \\
-\sin (\varphi) & 0 & \cos (\varphi)
\end{array}\right]
$$

5. Following the same approach we followed in class show that

$$
\left[\hat{J}_{z}, \hat{J}_{x}\right]=i \hbar \hat{J}_{y}
$$

