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1. This is example we partially did in class. You need to work out only part (e), (f), (g) (h), and (i) Particle in
a one-dimensional box: Consider a particle of mass m in a potential defined by

V (x) =

 ∞ x < 0
0 0 < x < a
∞ a < x

(a) Find the energy eigenvalues and eigen functions.

(b) Verify that if the energy eigen functions are orthogonal.

(c) Are the energy eigen functions orthonormal. If not normalize it.

(d) For the ground state find the energy, the expectation value for 〈px〉 ,
〈
p2
x

〉
, and the uncertainty ∆px.

(e) Suppose the width of the box is 1mm, roughly, what value of n corresponds to the state of 0.01ev if the particle
is an electron. How cold the electron must be to be in this state (i.e. find T )

(f) Calculate the density of states in the vicinity of 0.01eV . What is the number of states within the interval of
0.0001eV about the energy of 0.01eV. Hint: Density of state is given by dn/dE.

(g) By plotting the energy eigen functions for the ground state and the first few excited state and observing the
symmetry determine the eigen function for a particle of mass m in a potential V (x) defined by

V (x) =

 ∞ x < −a/2
0 −a/2 < x < a/2
∞ a/2 < x

(h) For the ground state find the expectation value for 〈x〉 ,
〈
x2
〉
, and the uncertainty ∆x.

(i) Using the results in part (d) and (h) show that ∆x∆px >
h̄
2 .

Solution:

(a) The energy eigenvalue equation in the region, 0 < x < a, can be expressed as

− h̄2

2m

d2u (x)

dx2
= Eu (x) , (1)

which can be expressed as
d2u (x)

dx2
+ q2u (x) = 0, (2)

where

q2 =
2mE

h̄2 . (3)

The solution to Eq. (3) is given by
u (x) = A cos (qx) +B sin (qx) . (4)

Since the particle can not exist outside the box the eigen function must vanish at the boundaries,

u (0) = 0⇒ A = 0, u (a) = 0⇒ B sin (qa) = 0⇒ q =
nπ

a
, n = 1, 2, 3... (5)

Therefore the eigen function and the corresponding eigen values are discrete and are given by

un (x) = Bn sin
(nπ
a
x
)
, En =

π2h̄2n2

2ma2
. (6)
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(b) If the energy eigen functions are orthogonal it must satisfy the condition (From Theoretical Physics 1 )∫ ∞
−∞

u∗n (x)um (x) dx =

{
const n = m

0 n 6= m
(7)

Using the eigen function in part (a) we have∫ ∞
−∞

u∗n (x)um (x) dx = B2
n

∫ a

0

sin
(nπ
a
x
)

sin
(mπ
a
x
)
dx (8)

and using

sin
(nπ
a
x
)

sin
(mπ
a
x
)

=
1

2

[
cos

(
(n−m)π

a
x

)
− cos

(
(n+m)π

a
x

)]
(9)

we find ∫ ∞
−∞

u∗n (x)um (x) dx =
B2
n

2

∫ a

0

[
cos

(
(n−m)π

a
x

)
− cos

(
(n+m)π

a
x

)]
dx

=
B2
n

2

∫ a

0

cos

(
(n−m)π

a
x

)
dx =

B2
n

2

{ ∫ a
0
dx n = m

0 n 6= m
(10)

⇒
∫ ∞
−∞

u∗n (x)um (x) dx =

{
aB2

n

2 n = m
0 n 6= m

(11)

Therefore the eigen functions are orthonormal

(c) Although the eigen functions are orthogonal we can not say it is orthonormal. For the functions to be orthonormal
the orthonormality condition ∫ ∞

−∞
u∗n (x)um (x) dx = δnm (12)

must be satisfied. Using the result in part (b), the orthonormalized eigen functions can be written as

un (x) =

√
2

a
sin
(nπ
a
x
)
. (13)

(d) The ground state energy is the minimum energy which is given by the minimum quantum number, n = 1

E1 =
π2h̄2

2ma2
. (14)

The expectation values for 〈px〉 which is given by

〈px〉 =

∫ ∞
−∞

ψ∗ (x, t)

(
−ih̄ ∂

∂x

)
ψ (x, t) dx, (15)

can be expressed for the ground state as in terms of the energy eigen functions as

〈px〉 =

∫ ∞
−∞

u∗1 (x)

(
−ih̄ ∂

∂x

)
u1 (x) dx = −2ih̄

a

∫ a

0

sin
(π
a
x
)(∂ sin

(
π
ax
)

∂x

)
dx

= −2ih̄

a

π

a

∫ a

0

sin
(π
a
x
)

cos
(π
a
x
)
dx⇒ 〈px〉 = 0. (16)

For
〈
p2
x

〉
, we can use the energy eigenvalue. We know that in the region 0 < x < a, since V (x) = 0

Ĥ =
p̂2
x

2m
⇒
〈
Ĥ
〉

=

〈
p̂2
x

2m

〉
= En ⇒

〈
p̂2
x

〉
2m

=
n2π2h̄2

2ma2
⇒
〈
p̂2
x

〉
=
π2h̄2

a2
. (17)

Then the uncertainties in momentum

∆p =

√
〈p2〉 − 〈p〉2 ⇒ ∆p =

πh̄

a
(18)
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(e) For a width
a = 10−2m (19)

and energy
E = 0.01ev = 0.01× 1.6× 10−19J (20)

solving for n from Eq. (6), we find

n =

√
2ma2En

π2h̄2 = 1.63× 104.

For a free particle in one dimensional box, the thermal energy equal to the kinetic energy (total energy) is
given by

E =
1

2
KT, (21)

where K = 8.62× 10−5ev/K is the Boltzman constant. Then temperature becomes

T =
2E

K
=

2× 0.01ev

8.62× 10−5ev/K
= 232K. (22)

(f) The density of state is given by dndE . Using the energy

E (n) =
π2h̄2

2ma2
n2, (23)

we may write

dE =
π2h̄2n

ma2
dn⇒ dn

dE
=

ma2

π2h̄2n
=

n

2
(
π2h̄2n2

2ma2

) =
n

2E
. (24)

Numerically
dn

dE
=

n

2E
=

1.63× 104

2× 10−2ev
= 0.82× 106 1

ev
. (25)

Therefore, the number of states, ∆n in an energy interval ∆E = 0.0001eV is

∆n =

E+∆E∫
E

dn

dE
dE = 0.82× 106 1

ev
∆E = 82 (26)

states.

(g) The plots for the eigen functions are given belowFor a particle in a one dimensional box with boundaries at
x = −a/2 and x = a/2

V (x) =

 ∞ x < −a/2
0 −a/2 < x < a/2
∞ a/2 < x

(27)

the eigen functions can be determined by shifting the graphs to the left by 0.5a. That leads to

un (x) = Bn sin
(nπ
a

(
x+

a

2

))
= Bn

[
sin
(nπx

a

)
cos
(nπ

2

)
+ cos

(nπx
a

)
sin
(nπ

2

)]
(28)

⇒ un (x) =

{
Bn sin

(
nπx
a

)
n = even

Bn cos
(
nπx
a

)
n = odd

(29)

where we have included the negative signs into the normalization constant.
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Figure 1: The energy eigen functions: n = 1 (Red), n = 2 (green), n = 3 (blue), and n = 4 (black).

(h) For the ground state the expectation value for 〈x〉 and
〈
x2
〉
can be expressed as

〈x〉 =

∫ ∞
−∞

u∗1 (x)xu1 (x) dx =
2

a

∫ a

0

x sin2
(π
a
x
)
dx,

and 〈
x2
〉

=

∫ ∞
−∞

u∗1 (x)x2u1 (x) dx =
2

a

∫ a

0

x2 sin2
(π
a
x
)
dx =

2

a

∫ a

0

x2
[
1− cos2

(π
a
x
)]
dx

Using the relation

sin2
(π
a
x
)

=
1

2

[
1 + cos

(
2π

a
x

)]
one can rewrite the above expressions as

〈x〉 =
1

a

∫ a

0

x

[
1 + cos

(
2π

a
x

)]
dx =

a

2
− 1

a

∫ a

0

x cos

(
2π

a
x

)
dx,

and 〈
x2
〉

=
1

a

∫ a

0

x2

[
1 + cos

(
2π

a
x

)]
dx =

a2

3
− 1

a

∫ a

0

x2 cos

(
2π

a
x

)
dx

Using integration by parts or (Mathematica), one can write∫ a

0

x cos

(
2π

a
x

)
dx =

a

2π

[
x sin

(
2π
a x
)

2π
a

∣∣∣∣∣
a

0

− a

2π

∫ a

0

sin

(
2π

a
x

)
dx

]
=
( a

2π

)2

cos

(
2π

a
x

)∣∣∣∣a
0

⇒
∫ a

0

x cos

(
2π

a
x

)
dx = 0

and ∫ a

0

x2 cos

(
2π

a
x

)
dx =

x2 sin
(

2π
a x
)

2π
a

∣∣∣∣∣
a

0

− a

π

∫ a

0

x sin

(
2π

a
x

)
dx = − a

π

∫ a

0

x sin

(
2π

a
x

)
dx

=
a

π

x cos
(

2π
a x
)

2π
a

∣∣∣∣∣
a

0

− a2

2π2

∫ a

0

cos

(
2π

a
x

)
dx =

a3

2π2

and the expectation values become

〈x〉 =
a

2
,
〈
x2
〉

=
a2

3
− a2

2π2
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(i) Using the results in part (d) and (h), one finds for the uncertainties

∆x =

√
〈x2〉 − 〈x〉2 =

√
a2

3
− a2

2π2
− a2

4
=

√
π2 − 6

12

a

π
,∆px =

√
〈p2
x〉 − 〈px〉

2
=

√
π2h̄2

a2
=
πh̄

a

⇒ ∆x∆px =

√
π2 − 6

3

h̄

2
' 1.3

h̄

2
>
h̄

2

2. Suppose the particle in the one-dimensional box considered in the example above has a wave function given by

ψ (x) =

{
A(x/a) 0 < x < a/2

A(1− x/a) a/2 < x < a
(30)

where A =
√

12/a is the normalization constant. Calculate the probability that a measurement of the energy
for this particle yields the value, En.

Solution: We recall the wave function in terms of the energy eigen functions can be expressed as

ψ (x, t) =

∞∑
n=0

anun (x) e
−iEnt

h̄
, (31)

where the expansion coeffi cients are determined using

an =

∫ ∞
−∞

u∗n (x)ψ (x) dx. (32)

For a particle in a box described by the wave function above, we may write

an =

∫ a/2

0

u∗n (x)A(x/a)dx+

∫ a

a/2

u∗n (x)A(1− x/a)dx. (33)

Using the result for the eigen function of a particle in a box confined in the region, 0 < x < a

un (x) =

√
2

a
sin
(nπ
a
x
)
. (34)

we find

an =

√
2

a
A

∫ a/2

0

sin
(nπ
a
x
) x
a
dx+

√
2

a
A

∫ a

a/2

sin
(nπ
a
x
)

(1− x

a
)dx (35)

Introducing transformation of variable defined by

1− u

a
=
x

a
(36)

we have

dx = −du, x =
a

2
⇒ u =

a

2
, x = a⇒ u = 0

sin
(nπ
a
x
)

= sin
(
nπ − nπ

a
u
)

= − cos (nπ) sin
(nπ
a
u
)

= − (−1)
n

sin
(nπ
a
u
)

(37)

so that one can express the integral∫ a

a/2

sin
(nπ
a
x
)

(1− x

a
)dx = (−1)

n
∫ 0

a/2

sin
(nπ
a
u
) u
a
du

= − (−1)
n
∫ a/2

0

sin
(nπ
a
u
) u
a
du

⇒
∫ a

a/2

sin
(nπ
a
x
)

(1− x

a
)dx = − (−1)

n
∫ a/2

0

sin
(nπ
a
x
) x
a
dx (38)
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where we take into account the fact that u is a dummy variable in the last step. The substituting this into the
equation for an, we find,

an =

√
2

a
A (1− (−1)

n
)

∫ a/2

0

sin
(nπ
a
x
) x
a
dx. (39)

We may put this equation in the form

an =

√
2

a
A (1− (−1)

n
)

a

n2π2

∫ a/2

0

sin
(nπ
a
x
) nπx

a
d
(nπx

a

)
⇒ an =

√
2

a
A (1− (−1)

n
)

a

n2π2

∫ nπ/2

0

sin (v) vdv. (40)

Using integration by parts, one can rewrite

an =

√
2

a
A (1− (−1)

n
)

a

n2π2

{
[− cos (v) v]

nπ/2
0 +

∫ nπ/2

0

cos (v) dv

}

=

√
2

a
A (1− (−1)

n
)

a

n2π2
{sin (v)− cos (v) v}nπ/20

⇒ an =

√
2

a
A (1− (−1)

n
)

a

n2π2

{
sin
(nπ

2

)
− nπ

2
cos
(nπ

2

)}
(41)

there follows that

an =


0 n = even√
96

π2n2 n = 1, 5, 9...

−
√

96
π2n2 n = 3, 7, 11..

(42)

where we substituted, A =
√

12/a. The the probability that a measurement results in energy value En is given
by

pn = |an|2 =

{
0 n = even
96
π4n4 n = odd

(43)

3. For a step potential shown in the figure below show that the probability that the particle gets reflected is given

by the ratio of the reflected flux to the incident flux

jre
jin

=

∣∣∣∣q − kq + k

∣∣∣∣2
and for the probability that it gets transmitted

jtr
jin

=
4 |kq|
|q + k|2

where

k2 =
2mE

h̄2 .

and

q2 =
2m (E − V0)

h̄2 .
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Solution: The Shrödinger equation in the region x < 0 can be written as

− h̄2

2m

d2u (x)

dx2
= Eu (x)⇒ d2u (x)

dx2
+

2mE

h̄2 u (x) = 0

⇒ d2u (x)

dx2
+ k2u (x) = 0, (44)

where

k2 =
2mE

h̄2 . (45)

In the region x > 0

− h̄2

2m

d2u (x)

dx2
+ V0u (x) = Eu (x)⇒ d2u (x)

dx2
+

2m (E − V0)

h̄2 u (x) = 0

⇒ d2u (x)

dx2
+ q2u (x) = 0, (46)

where

q2 =
2m (E − V0)

h̄2 . (47)

The general solutions of Eqs. (44) and (46) are given by

u (x) =

{
Aeikx +Re−ikx, x < 0

Teiqx, x > 0
(48)

where we dropped the De−iqx term in the region x > 0 since there is nothing that causes the particle to
reverse its direction. However, in the region x < 0, that particle could get reflected because of the potential
it encountered at x = 0 and we keep the term Re−ikx.Imposing the condition that the wave function and its
derivative must be continuous everywhere including at, x = 0, where the potential abruptly changes, we find

A+R = T, ik (A−R) = iqT ⇒ A+R = T,A−R =
q

k
T (49)

In terms of the incident wave amplitude A, we may write

R =

(
q − k
q + k

)
A, T =

2k

q + k
A (50)

The incident, reflected, and transmitted flux : We recall that the probability current density, J (x, t) , which is
given by

J (x, t) =
h̄

2mi

[
ψ∗ (x, t)

∂

∂x
ψ (x, t)− ψ (x, t)

∂

∂x
ψ∗ (x, t)

]
, (51)

tells us the flux of particles incident, reflected or transmitted at a given position, x and at time, t. Using this
relation and the results obtained above we may write the net flux of particle incident at x = 0 as

Jnet in (0, t) =
h̄

2mi

[
u∗ (x)

∂

∂x
u (x)− u (x)

∂

∂x
u∗ (x)

]
x=0

, (52)

using the wave function for x < 0, we have

u∗ (x)
∂

∂x
u (x) = ik

(
Ae−ikx +Reikx

) (
Aeikx −Re−ikx

)
⇒
[
u∗ (x)

∂

∂x
u (x)

]
x=0

= ik (A∗ +R∗) (A−R) = ik
(
|A|2 − |R|2

)
(53)

and

u (x)
∂

∂x
u∗ (x) = −ik

(
Aeikx +Re−ikx

) (
A∗e−ikx −R∗eikx

)
⇒
[
u (x)

∂

∂x
u∗ (x)

]
x=0

= −ik
(
|A|2 − |R|2

)
(54)
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so that

Jnet in (0, t) =
h̄

2mi

[
ik
(
|A|2 − |R|2

)
+ ik

(
|A|2 − |R|2

)]
, (55)

⇒ Jnet in (0, t) =
h̄k

m

(
|A|2 − |R|2

)
. (56)

The net flux of particle transmitted into the region, x > 0

Jnet tr (0, t) =
h̄

2mi

[
u∗ (x)

∂

∂x
u (x)− u (x)

∂

∂x
u∗ (x)

]
x=0

,

using the wave function in the region x > 0, we have

u∗ (x)
∂

∂x
u (x) = iqT ∗e−iqxTeiqx = iq |T |2 ⇒

[
u∗ (x)

∂

∂x
u (x)

]
x=0

= iqT 2 (57)

and [
u (x)

∂

∂x
u∗ (x)

]
x=0

= −iqT 2 (58)

so that

Jtr (0, t) =
h̄q

m
T 2. (59)

Recalling that
∂

∂t
P (x, t) = − ∂

∂x
J (x, t) (60)

when the wave function does not change with time

− ∂

∂x
J (x, t) =

∂

∂t
P (x, t) = 0⇒ J (x, t) = constant (61)

which gives
h̄k

m

(
|A|2 − |R|2

)
=
h̄q

m
|T |2 (62)

From Eq. (62), we note that the incident flux is

jin =
h̄k

m
|A|2 (63)

the reflected flux

jre =
h̄k

m
|R|2 (64)

and the transmitted flux

jtr =
h̄q

m
|T |2 (65)

so that

h̄k

m

(
|A|2 − |R|2

)
=

h̄q

m
|T |2 ⇒ Jnet in (0, t) = Jnet tr (0, t)

⇒ jin + jre = jtr (66)

Using the results in Eq. (50) the reflected and transmitted flux in terms of the amplitude of the incident wave
can be expressed as

jre =
h̄k

m

∣∣∣∣q − kq + k

∣∣∣∣2 |A|2 (67)

and

jtr =
h̄q

m

∣∣∣∣ 2k

q + k

∣∣∣∣2 |A|2 . (68)
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The probability that the particle gets reflected is given by the ratio of the reflected flux to the incident flux

jre
jin

=

h̄k
m

∣∣∣ q−kq+k

∣∣∣2 |A|2
h̄k
m |A|

2 =

∣∣∣∣q − kq + k

∣∣∣∣2 (69)

the probability that it gets transmitted

jtr
jin

=

h̄q
m

∣∣∣ 2k
q+k

∣∣∣2 |A|2
h̄k
m |A|

2 =
4 |kq|
|q + k|2

(70)

which shows that |R|2 and |T |2 represent the reflection and transmission probability, respectively

4. Do Chapter 8 Example 5 in my note and make a mathematical and physical justification to show that for a
potential well defined by the function

V (x) =

 0 x < −a
−V0 −a < x < a

0 x > a
(71)

and a particle with energy E > 0, the probability of reflection

jre
jin

=
|R|2

|A|2
=

(
q2 − k2

)2
sin2 (2qa)

4 (qk)
2

cos2 (2qa) + (q2 + k2)
2

sin2 (2qa)
,

and for transmission
jre
jin

=
|T |2

|A|2
=

4 (qk)
2

4 (qk)
2

cos2 (2qa) + (q2 + k2)
2

sin2 (2qa)

can be obtained from the results you derived in Example 5. That means you must provide a mathematical and
physical justification to find these equations from

|R|2

|A|2
=

(
k2 + q2

)2
sinh2 (2qa)

(k2 + q2)
2

sinh2 (2qa) + (2kq)2

and
|T |2

|A|2
=

(2kq)
2

(k2 + q2)
2

sinh2 (2qa) + (2kq)2

respectively.

Solution: We recall for a potential barrier (See figure below) where the total energy is positive (E < V0), the probability
that the incident particle gets reflected at the well is given by

jre
jin

=
|R|2

|A|2
=

(
k2 + q2

)2
sinh2 (2qa)

(k2 + q2)
2

sinh2 (2qa) + (2kq)2
, (72)

and gets transmitted
jre
jin

=
|T |2

|A|2
=

(2kq)
2

(k2 + q2)
2

sinh2 (2qa) + (2kq)2
(73)

where

k2 =
2mE

h̄2 . (74)

and

q2 =
2m |E − V0|

h̄2 =
2m (V0 − E)

h̄2 . (75)

For a potential well (see the figure below) the difference is the potential V0 is negative (i.e. V (x) = −V0 in
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the well) and also we are interested in the case where the total energy is is positive (E > 0). Under these
conditions we may write the constant, q, as

q2 =
2m (−V0 − E)

h̄2 = −2m (V0 + E)

h̄2 ⇒ q = ±iq′. (76)

where

q′ =

√
2m (V0 + E)

h̄2 .

Then using q = ±iq′, one can rewrite the reflection and transmission coeffi cients as

|R|2

|A|2
=

(
k2 + (±iq′)2

)2

sinh2 (±2iq′a)(
k2 + (±iq′)2

)2

sinh2 (±2iq′a) + (±2ikq′)2

=

(
k2 − q′2

)2
sinh2 (±2iq′a)

(k2 − q′2)
2

sinh2 (±2iq′a)− (2kq′)2

and
|T |2

|A|2
=

(±2iq′k)
2(

k2 + (±iq′)2
)2

sinh2 (±2iq′a) + (±2ikq′)2

=
−(2kq′)2

(k2 − q′2)
2

sinh2 (±2iq′a)− (2kq′)2
(77)

Noting that

sinh (±2iq′a) = i

[
ei(±2q′a) − e−i(±2q′a)

2i

]
= i sin (±2q′a) = ±i sin (2q′a)

⇒ sinh2 (±2iq′a) = [±i sin (2q′a)]
2

= − sin2 (2q′a)

we find
|R|2

|A|2
=

(
k2 − q′2

)2
sin2 (2q′a)

(k2 − q′2)
2

sin2 (2q′a) + (2kq′)2

and
|T |2

|A|2
=

(2kq′)2

(k2 − q′2)
2

sin2 (2q′a) + (2kq′)2
(78)

Using

4 (q′k)
2

cos2 (2q′a) +
(
q′2 + k2

)2
sin2 (2qa) = 4 (q′k)

2
+
[(
q′2 + k2

)2 − 4 (q′k)
2
]

sin2 (2qa)

⇒ 4 (q′k)
2

cos2 (2q′a) +
(
q′2 + k2

)2
sin2 (2qa) = 4 (q′k)

2
+
(
q′2 − k2

)2
sin2 (2qa)

one can rewrite
|R|2

|A|2
=

(
k2 − q′2

)2
sin2 (2q′a)

4 (q′k)
2

cos2 (2q′a) + (q′2 + k2)
2

sin2 (2qa)

and
|T |2

|A|2
=

(2kq′)2

4 (q′k)
2

cos2 (2q′a) + (q′2 + k2)
2

sin2 (2qa)
(79)

11



note that q is a dummy variable and we can rename it q as long as

q = q′ =

√
2m (V0 + E)

h̄2 .

5. For a particle of mass in the 1-D potential energy well

V (x) =

{
0 0 < x < a
∞ elsewhere

(80)

is at time t = 0 in the state

ψ (x, t = 0) =

{ (
1+i
2

)√
2
a sin

(
π
ax
)

+ 1√
2

√
2
a sin

(
2π
a x
)

0 < x < a

0 elsewhere
(81)

(a) Find the wave function at a later time, ψ (x, t) .

(b) What is the expectation value for the energy,
〈
Ĥ
〉

?

(c) What is the probability that a measurement of the energy will yield the value

E =
π2h̄2

2ma2

(d) Without detailed computation, give an argument that 〈x〉 is time dependent.

Solution:

(a) We recall that

ψ (x, t) =

∞∑
n=0

anun (x) e
−iEnt

h̄
, (82)

and at t = 0,

ψ (x, t = 0) =

∞∑
n=0

anun (x)⇒
∫ a

0

u∗m (x)ψ (x, t = 0) dx =

∞∑
n=0

an

∫ a

0

un (x)u∗m (x) dx. (83)

⇒
∫ a

0

u∗m (x)ψ (x, t = 0) dx =

∞∑
n=0

anδnm (84)

⇒ an =

∫ a

0

u∗n (x)ψ (x, t = 0) dx. (85)

Then using the given wave function at the initial time

ψ (x, t = 0) =

(
1 + i

2

)√
2

a
sin
(π
a
x
)

+
1√
2

√
2

a
sin

(
2π

a
x

)
(86)

which we may rewrite as

ψ (x, t = 0) =

(
1 + i

2

)
u1 (x) +

1√
2
u2 (x) (87)

we have

an =

(
1 + i

2

)∫ a

0

u∗n (x)u1 (x) dx+
1√
2

∫ a

0

u∗n (x)u2 (x) dx.

so that applying the orthonormality condition for the eigen fuctions∫ ∞
−∞

un (x)u∗m (x) dx = δnm (88)
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one finds

an =


1+i
2 n = 1
1√
2

n = 2

0 n > 2

Therefore, the wave functions at a later time becomes

ψ (x, t) = a1u1 (x) e
−iE1t

h̄
+ a2u2 (x) e

−iE2t

h̄
(89)

where

a1 =
1 + i

2
, u1 (x) =

√
2

a
sin
(π
a
x
)
, E1 =

π2h̄2

2ma2

a2 =
1√
2
, u2 (x) =

√
2

a
sin

(
2π

a
x

)
, E2 =

2π2h̄2

ma2
= 4E1

(b) We have proved in class that the expectation value for the energy is independent of time and can be determined
using 〈

Ĥ
〉

=
∞∑
n=0

|an|2En. (90)

Using this relation and the wave function we determined, we find〈
Ĥ
〉

= |a1|2E1 + |a2|2E2 =
1

2
E1 +

1

2
(4E1) =

5

2
E1 =

5π2h̄2

4ma2
(91)

(c) Noting that

E =
π2h̄2

2ma2
= E1

one can easily see that

P1 = |a1|2 =
1

2

(d) We recall that the expectation value for the position must be determined from

〈x〉 =

∫ a

0

ψ∗ (x, t)xψ (x, t) dx =

∫ a

0

x |ψ (x, t)|2 dx.

We have shown that the wave function is

ψ (x, t) = a1u1 (x) e
−iE1t

h̄
+ a2u2 (x) e

−iE2t

h̄
(92)

which indicates that

|ψ (x, t)|2 = |a1u1 (x)|2 + |a2u2 (x)|2 + a1u1 (x) a∗2u
∗
2 (x) e

−i(E1−E2)t

h̄
+ a∗1u

∗
1 (x) a2u2 (x) e

i(E1−E2)t

h̄

is time dependent and therefore so does the expectation value for the position.

Another explanation can be based on the Haisenberg picture.The postion x is time dependent because it does
not commute with the Hamiltonian. For the particle inside the well where the potential is zero, the Hamiltonian
is given

Ĥ =
p̂2
x

2m

then [
x̂, Ĥ

]
=

1

2m

[
x̂, p̂2

x

]
6= 0

6. Recommended problems Townsend # 6:12, 15, 17, 18, 21
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