PHYS 4390 Quantum Mechanics II

Homework Assignment 01
Due date: January 31, 2019
Instructor: Dr. Daniel Erenso
Name: \qquad

Mandatory problems: any two problems is required but I want you to try all!
Student signature: \qquad

Student Comment: \qquad

[^0]

P \#	1	2	3	4	5	Score
Score	$/$	$/$	$/$	$/$	$/$	$/ 100$

Prob 1 Following a similar procedure to the one we used in the first order nondegenerate perturbation theory, show that in the second order nondegenerate perturbation theory the second order corrections are given by

$$
E_{n}^{(2)}=\sum_{k \neq n}^{\infty} \frac{\left.\left|\left\langle\phi_{n}\right| \hat{H}_{1}\right| \phi_{k}\right\rangle\left.\right|^{2}}{E_{n}^{0}-E_{k}^{0}}
$$

and

$$
C_{n m}^{(2)}=\frac{C_{n m}^{(1)} E_{n}^{(1)}-\sum_{k \neq n}^{\infty} C_{n k}^{(1)}\left\langle\phi_{m}\right| \hat{H}_{1}\left|\phi_{k}\right\rangle}{E_{m}^{0}-E_{n}^{0}}
$$

Prob 2 Townsend 11.1
Prob 3 Townsend 11.4
Prob 4 Consider a symmetric rotator with

$$
\hat{H}_{0}=\frac{\hat{L}^{2}}{2 I}
$$

where \hat{L} is the angular momentum operator and I is the moment of inertia of the rotator. Suppose this system is subject to a perturbation given by

$$
\hat{H}_{1}=E_{1} \cos (\theta)
$$

what are the energy shifts for the states with $l=1$
Prob 5 (a) Townsend 11.6
(b) Determine the second order energy shift for the ground state of a Hydrogenic atom.

[^0]:

