PHYS 4390 Quantum Mechanics II

Homework Assignment 03

Due date: February 12, 2019
Instructor: Dr. Daniel Erenso
Name:

Mandatory problems: any two problems is required but I want you to try all!
Student signature: \qquad

Student Comment: \qquad

[^0]

P \#	1	2	3	4	5	Score
Score	$/$	$/$	$/$	$/$	$/$	$/ 100$

Prob 1 Show that the

$$
\left[\left(\hat{p}^{2}\right)^{2}, \hat{L}\right]=0,\left[\hat{S} \cdot \hat{L}, \hat{J}_{z}\right]=0
$$

where

$$
\hat{J}_{z}=\hat{L}_{z}+\hat{S}_{z}
$$

Prob 2 Show that

$$
2(\hat{S} \cdot \hat{L})=\hat{L}_{+} \hat{S}_{-}+\hat{L}_{-} \hat{S}_{+}+2 \hat{L}_{z} \hat{S}_{z}
$$

where \hat{S} is spin and \hat{L} is orbital angular momentum operators, \hat{L}_{z} and \hat{S}_{z} are the corresponding z-component operators satisfying the eigenvalue equation

$$
\hat{L}_{z}|l, m\rangle=\hbar m|l, m\rangle, \hat{S}_{z}\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle= \pm \frac{\hbar}{2}\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle
$$

The raising $(+)$ and lowering $(-)$ operators given by

$$
\hat{S}_{ \pm}=\hat{S}_{x} \pm i \hat{S}_{y}, \hat{L}_{ \pm}=\hat{L}_{x} \pm i \hat{L}_{y}
$$

satisfy the equation

$$
\begin{aligned}
\hat{L}_{ \pm}|l, m\rangle & =\hbar \sqrt{(l(l+1)-m(m \pm 1))}|l, m \pm 1\rangle \\
\hat{S}_{ \pm}\left|l_{s}, m_{s}\right\rangle & =\hbar \sqrt{\left(l_{s}\left(l_{s}+1\right)-m_{s}\left(m_{s} \pm 1\right)\right)}\left|l_{s}, m_{s} \pm 1\right\rangle
\end{aligned}
$$

Prob 3 Following a similar procedure we followed in class show that

$$
\begin{aligned}
\left\langle n, l, m, \chi_{1}\right| \hat{H}_{1}\left|n, l, m, \chi_{1}\right\rangle & =\hbar^{2} m F(r), \\
\left\langle n, l, m+1, \chi_{2}\right| \hat{H}_{1}\left|n, l, m+1, \chi_{2}\right\rangle & =-\hbar^{2}(m+1) F(r)
\end{aligned}
$$

where

$$
F(r)=\frac{Z e^{2}}{8 \pi \epsilon_{0} m_{e}^{2} c^{2}} \frac{Z^{3}}{a_{0}^{3} n^{3} l\left(l+\frac{1}{2}\right)(l+1)}
$$

and

$$
\begin{gathered}
\hat{H}_{1}=\frac{Z e^{2}}{8 \pi \epsilon_{0} m_{e}^{2} c^{2}} \frac{2(\hat{S} \cdot \hat{L})}{r^{3}}=\frac{Z e^{2}}{8 \pi \epsilon_{0} m_{e}^{2} c^{2}} \frac{1}{r^{3}}\left(\hat{L}_{+} \hat{S}_{-}+\hat{L}_{-} \hat{S}_{+}+2 \hat{L}_{z} \hat{S}_{z}\right), \\
\left|\chi_{1}\right\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle,\left|\chi_{2}\right\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle
\end{gathered}
$$

Prob 4 Determine the eigenvalues and eigenvectors for the matrix

$$
A=\left[\begin{array}{cc}
m & \sqrt{l(l+1)-m(m+1)} \\
\sqrt{l(l+1)-m(m+1)} & -(m+1)
\end{array}\right]
$$

Prob 5 Neglecting the intrinsic spin of the electron, the Hamiltonian for an electron in a hydrogen atom subject to a constant magnetic field \vec{B} is given by

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m_{e}}-\frac{e^{2}}{4 \pi \epsilon_{0} r}+\frac{e}{2 m} \widehat{\vec{L}} \cdot \widehat{\vec{B}}
$$

where \vec{L} is the orbital angular momentum operator. In the absence of the magnetic field, there will be a single line in the transition from an $(n=4, l=3)$ state to an $(n=3, l=2)$ state. What will be the effect of the magnetic field on that line? Sketch the new spectrum and the possible transitions, constrained by the selection rule (i.e. $\Delta m=0, \pm 1$). How many lines will there be? What will be the effect of a constant electric field \vec{E} parallel to \vec{B}.

[^0]:

