PHYS 4800 HOMEWORK 04
DUE DATE: Before spring break
Declaration:
It am expected to solve all the five problems assigned for this homework set to get a full credit. I have tried all my best to solve all the five problems. I have submitted the solutions of \qquad Problems. All the solutions are solely the result of my own work. I am also fully aware that only two problems selected by Dr. Erenso will be graded and scored according to the outline given in syllabus. Signature:

P \#	1	2	3	4	5	Score	F. Score
Score	$/$	$/$	$/$	$/$	$/$	$/ 100$	$/ 100$

Prob 1 Consider the 3D sphere of radius, a, in a $4 D$ Euclidean space. A point P on this 3D sphere is described by the vector

$$
\vec{s}=r \sin (\theta) \cos (\varphi) \hat{x}+r \sin (\theta) \sin (\varphi) \hat{y}+r \cos (\theta) \hat{z}+\sqrt{a^{2}-r^{2}} \hat{w}
$$

(a) Find the basis vectors $\hat{e}_{r}, \hat{e}_{\theta}$, and \hat{e}_{φ} in the tangent space at point P.
(b) Re-derive the metric elements for a 3D sphere from the basis vectors.

Prob 2 Problem 2.10 from the text
Prob 3 For the a coordinate transformation $x^{a} \rightarrow x^{\prime a}$, show that at a point on a maniforld, the dual basis vector are transformed by the equation

$$
\hat{e}^{\prime a}=\frac{\partial x^{\prime a}}{\partial x^{c}} \hat{e}^{c}
$$

Prob 4 For the a coordinate transformation $x^{a} \rightarrow x^{\prime a}$, show that at a point on a maniforld the covariant components of a vector \vec{v} transformed by the equation

$$
v_{b}^{\prime}=\frac{\partial x^{a}}{\partial x^{\prime b}} v_{a}
$$

Prob 5 Problem 2.13 from the text
Prob 6 Optional: This is a problem requires your understanding of the special theory of relativity we covered in the first chapter and E \& M:
Consider a long conducting wire carrying a current I along the x-axis on the S frame. This current can be visualized as a string of positive charge described by a charge density λ moving along the positive x-direction with velocity v measured in the S frame. Superimposed on the positive charge there is a negative charge with the same charge density λ moving in the negative x -direction with the same magnitude of velocity. The the current generated will then be

$$
I=2 \lambda v
$$

and the magnetic field at a distance a from the line charge

$$
B=\frac{\mu_{0} I}{2 \pi a}=\frac{\mu_{0} \lambda v}{\pi a}
$$

Now consider a point charge q moving along the positive x-direction with a velocity $u<v$ at a distance a from the line charge. For an observer on the S frame where we measured the velocities (both u and v), since the total charge is zero the electrical force on the point charge is zero and the charge experiences only magnetic force given by

$$
F_{m}=-q u B=-\frac{\mu_{0} q u \lambda v}{\pi s}
$$

For an observer on the S^{\prime} frame moving with a velocity v in the positive x-direction, show that the force is actually an electrical force given by

$$
F_{\perp}^{\prime}=F_{e l}^{\prime}=-\frac{\mu_{0} q \lambda u v}{\pi s} \frac{1}{\sqrt{1-u^{2} / c^{2}}}
$$

Hint: You need length the length and velocity transformations. If you can show that without looking at E \& M text book or my $E \in M$ note you must be proud of yourself!!! You have master $E \mathcal{B} M$ and Special theory of relativity!

