Example 1: Integration for $y = x^2$ from x = 0 to x = 1.

$$\int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} - 0 = \boxed{\frac{1}{3} \text{ or } 0.333 \dots \text{ square units}}$$

Answer these questions...

Accurate area under the curve

- 1. What is the length of the base of each rectangle? (<- in calculus, this is called a partition)
- 2. Calculate the area of each rectangle, then sum the areas to approximate the area under the curve.

- 3. Is the area approximation greater or less than 1/3 or 0.333...? (Circle one.) Greater than 1/3 or 0.333... Less than 1/3 or 0.333...
- 4. What is the length of the base of each rectangle? (<- in calculus, this is called a partition)
- 5. Calculate the area of each rectangle, then sum the areas to approximate the area under the curve.

- 6. Is the area approximation greater or less than 1/3 or 0.333...? (Circle one.) Greater than 1/3 or 0.333... Less than 1/3 or 0.333...
- 7. What is the length of the base of each rectangle? (<- in calculus, this is called a partition)
- 8. Calculate the area of each rectangle, then sum the areas to approximate the area under the curve.

- 9. Is the area approximation greater or less than 1/3 or 0.333...? (Circle one.)
 - Greater than 1/3 or 0.333...

Less than 1/3 or 0.333...

- 10. Which rectangle method's approximate area under the curve was closest to the accurate area? (Circle one.)
 - Rectangles with a partition of 1/2
- Rectangles with a partition of 1/5
- Rectangles with a partition of 1/10
- 11. All of the area approximations were greater than the accurate answer (1/3 or 0.333...). Why do you think that is?

Example 2: Integration for $y = 2x^2$ from x = 0 to x = 1.

$$\int_0^1 2x^2 dx = \frac{2x^3}{3} \Big|_0^1 = \frac{2(1^3)}{3} - \frac{2(0^3)}{3} = \frac{2}{3} - 0 = \boxed{\frac{2}{3} \text{ or } 0.666... \text{ square units}}$$

Accurate area under the curve

- 1. What is the length of the base of each rectangle? (<- in calculus, this is called a partition)</p>
- 2. Calculate the area of each rectangle, then sum the areas to approximate the area under the curve.

3. Is the area approximation greater or less than 2/3 or 0.666...? (Circle one.)

Greater than 2/3 or 0.666... Less than 2/3 or 0.666...

- 4. What is the length of the base of each rectangle? _____ (<- in calculus, this is called a partition)
- 5. Calculate the area of each rectangle, then sum the areas to approximate the area under the curve.

6. Is the area approximation greater or less than 2/3 or 0.666...? (Circle one.)

Greater than 2/3 or 0.666... Less than 2/3 or 0.666...

Answer these questions...

- 7. How does the size of the partition change the accuracy of the approximation of the area under the curve? Why?
- 8. What similarities and differences do you notice between the "triangle method" and the "rectangle method"?

Example 3: Integration for $y = -x^2 + 1$ from x = 0 to x = 1.

$$\int_0^1 -x^2 + 1 \, dx = \frac{-x^3}{3} + x \bigg|_0^1 = \left(\frac{-(1^3)}{3} + 1 \right) - \left(\frac{-(0^3)}{3} + 0 \right) = \frac{-1}{3} + 1 = \boxed{\frac{2}{3} \text{ or } 0.666... \text{ square units}}$$

- What is the length of the base of each rectangle?
 _____ (<- in calculus, this is called a partition)
- 2. Calculate the area of each rectangle, then sum the areas to approximate the area under the curve.

3. Notice that the approximation is less than 2/3 or 0.666.... Why do you think this approximation is less than the accurate answer?

- 4. What is the length of the base of each rectangle?

 (<- in calculus, this is called a partition)
- Calculate the area of each rectangle, then sum the areas to approximate the area under the curve.

6. Which approximation (the approximation above with a partition of ½ or this approximation with a partition of 1/5) is closer to the accurate answer? Why?

Answer this question...

7. What did you learn today in your own words? Give as much detail as you can.