

DIRECTIONS FOR INSTRUCTOR USE OF THE SOFTWARE ENGINEERING I ASSESSMENT
RUBRIC

This rubric is intended for use in evaluating student ability to use current techniques, skills, and tools necessary for computing
practice. Instructors should share copies of the assessment rubric with students in advance of the students' participation in assignments
so that they will understand what is expected of them on the assignment and how they will be evaluated.

To use the rubric, the evaluator should place check marks in the boxes corresponding to their evaluation of the various dimensions of
the student’s performance.

The rubric is set up with four levels of performance (i.e., unacceptable, developing, competent, exemplary) that can be achieved by the
student during the assignment.

• unacceptable: :
The student does not demonstrate sufficient knowledge, skills or abilities with respect to this dimension and therefore, does not
meet the instructor's expectations.

• developing:
The student demonstrates only the initial knowledge, skills or abilities with respect to this dimension and therefore, does not
meet the instructor's expectations.

• competent:
The student demonstrates sufficient knowledge, skills or abilities with respect to this dimension, and thereby basically meets
the instructor's expectations.

• exemplary:
The student demonstrates greater knowledge, skills, or abilities than expected by the instructor, and thereby exceeds the
instructor's expectations with respect to this dimension.

MTSU Computer Science Software Engineering I Rubric version 1.0 Last Change 8/23/2011

Name of Individual being evaluated:

Name of Evaluator:

Performance

Criteria Unacceptable Developing Competent Exemplary

The student
applies
appropriate
software
development
process models.

The student applies the
same process model to
every software system
being developed

The student alternates
between one predictive
model and one agile model
for various systems

The student demonstrates
the ability to apply several
agile and predictive
models to different
software system
development situations.

The student modifies
classical process models
to accommodate the
particular needs of a
given software
development situation.

The student
thoroughly
models planned
software system
to effectively
plan the future
implementation

The student begins
software
implementation without
significant modeling of
software processes and
interactions

The student lays out
preliminary model of
software processes and
interactions prior to the start
of coding

The student applies
modern modeling tool
(e.g., UML) to model the
primary classes and
functionality of a planned
software system

The student applies a
modern modeling tool to
develop a detailed model
of a planned software
system’s classes and
interactions, including the
planning of actual client
usage.

The student
develops
accurate time
and size
estimations for
a planned
software system

The student merely
guesses about the time
and size associated with
a planned project

The student extrapolates time
estimates on projects from
experience on previous
projects

The student applies linear
regression to estimate time
and size of a new project
based on data from
previous projects

The student applies linear
regression to estimate the
time and size of a new
project, with an
alternative estimation
technique used if data
correlation is insufficient.

