## **Chapter 3: Introduction to Logic**

**Logic**: any formal system that abstracts the form of statements away from their content in order to studying their truth value.

**Symbolic Logic**: A system that assigns letters to represent statements and symbols to represent words such as *and*, *or*, *not*. Only used for statements that involve facts, not opinion. One of the early inventors is Gottfried Leibniz, 1646 – 1716.

**Statement**: A declarative sentence (of fact) that is either true or false, but not both simultaneously.

**Compound statement**: A statement formed by joining 2 or more statements into one. **Component Statement**: one of the statements that make up a compound statement.

**Logical Connectives**: Sometimes referred to simply as connectives, words used to form compound statements. **Examples**: *and*, *or*, *not*, *if* . . . *then* 

**Negations**: a statement is a negation of a statement if and only if it has the opposite truthe value. A negation MUST have the opposite truthe value from the original statement: the negation of a true statement is false, and the negation of a false statement is true.

Conditional Statement: a compound statement using the "if . . . then" connective.

Symbolically:  $p \Rightarrow q$  Read: "If p, then q" or "p implies q"

In  $p \Rightarrow q$ , p is the antecedent statement and the q is the consequent statement. 'Does NOT imply a cause and effect relationship. A conditional is F (false) ONLY when the antecedent (p) is T (true) and the consequent (q) is F. A conditional is automatically T when p is F and, also, when q is T.

**Quantifiers**: indicate how many of a particular situation exists. Two types:

- .....Universal Quantifiers: all, each, every, no, none; and
- .....Existential Quantifiers: some, there exists, (for) at least one

## **Types of Compound Statements**

| Name        | Symbol example |            | How read         | Key Idea     |
|-------------|----------------|------------|------------------|--------------|
| Conjunction | ٨              | p∧q        | "p and q"        | ВОТН         |
| Disjunction | V              | $p \vee q$ | "p or q or both" | inclusive or |
| Negation    | ~              | ~p         | "not p"          | opposite     |

**Truth Tables:** a symbolic method of determining the truth value of compound statements. When the results column of a truth table is all T, then the compound statement is a tautology.

**Equivalent Statements:** have the same truth value in every possible situation.

Symbol:  $\equiv$  Means : identical to

**Numeration Systems**: the various ways of symbolizing and working with the counting numbers.

**Numerals**: the symbols used to represent the numbers.

**Hindu-Arabic system**: the modern decimal (base 10) number system.

**H-A numerals**: {1, 2, 3, 4, 5, 6, 7, 8, 9, 0} aka: digits.

**Roman Numerals**: the system used in the Ancient Roman Republic and Empire, also base 10. Roman numerals are still used in a primarily decorative fashion. See p. 141 for the Roman numeral symbols and the Special Features of the Roman System.

I expect you to be able to correctly write and interpret numbers in Roman numerals, such as a year or the number of a Super Bowl.

| SYMBOL | MEANING               | EXAMPLE                     |
|--------|-----------------------|-----------------------------|
| 0      | is a set              | <b>S</b> = {4,5}            |
| €      | is an element of      | $s \in S$                   |
| ≰      | is not an element of  | s <b>∉ T</b>                |
| ⊆      | is a subset of        | $S \subseteq T$             |
| _      | is a proper subset of | $S \subset T$               |
| U      | union                 | $s \cup r$                  |
| n      | intersection          | $S \cap T$                  |
| Ø      | the empty set         | (2,3,4) n<br>(5,6,7)<br>= Ø |

Recap: Conditional Statements

| Conditional                   | If I am sleeping, then I am                    |
|-------------------------------|------------------------------------------------|
| (p → q )                      | breathing.                                     |
| Converse                      | If I am breathing, then I am                   |
| $(q \rightarrow p)$           | sleeping.                                      |
| Inverse                       | If I am not sleeping, then I am                |
| ( ~p → ~q )                   | not breathing.                                 |
| Contrapositive<br>( ~q → ~p ) | If I am not breathing, then I am not sleeping. |

