$\underline{\text { TVM (Time-Value of Money) Solver on the Graphing Calculator (TI-83 Plus or TI-84 Plus) }}$

\mathbf{N} : Total number of payment periods over the investment or loan. (number of payments per year) \times (number of years) Ex: For 30-year investment with monthly compounding, $\mathrm{N}=30 \cdot 12=360$

I\%: Annual interest rate (APR as percent, not as a decimal).
Ex: Enter 9.5 instead of .095 for 9.5%
PV: Present value. Your present value (principal, deposit) of your investment or the current mortgage balance.

PMT: The payment amount of the loan or the amount you are contributing to the investment.

FV: Future value. Your balance of the investment or loan after \mathbf{N} payment periods. (Acts like the variable A in interest formulas)
\mathbf{P} / \mathbf{Y} : number of payment periods per year.
For the problems we will do for class, $\mathbf{P} / \boldsymbol{Y}$ and $\mathbf{C} / \boldsymbol{Y}$ will be the same.
C/Y: number of compounding periods per year.
PMT: Always keep END highlighted.

IMPORTANT NOTES:

- You will enter values for every variable but one, and then you will solve for the remaining variable by using A-LOCK Entrysolve on the row that you are trying to calculate.

- There must be a number in each field. If you press "CLEAR," you will not be able to leave that field until you enter another number in that field.
- For investments, FV and PV will have opposite signs - if one is negative, the other must be positive.
- The TVM Solver should NOT be used for simple interest calculations!!

1. Lump-Sum Investment (find the Future Value)

You deposit $\$ 1000$ in an account that bears 6.5% interest compounded daily for 20 years. How much will this investment be worth at the end of the 20 years?

The investment will be worth $\$ 3668.87$ in 20 years.

2. Lump-Sum Investment (find the Present Value)

You want to accumulate $\$ 7500$ over the next 15 years by making a single deposit into a savings account now. How much deposit do you need to invest in order to reach your goal if you find a savings account with 4.5% interest compounded continuously?

Note: for continuous compounding, use a VERY large number for compoundings,

You need to deposit $\$ 3818.67$ in order to meet your goal.
3. Find the annual percentage rate (APR) - with finance charge

Find the annual percentage rate for $\$ 4700$ financed, with a finance charge of $\$ 1002$, and a loan term of 36 months.

This is a little bit more work. First, we need to calculate the monthly payment (PMT):
$-\frac{\text { Amount Financed }+ \text { Finance Charge }}{\text { Total months of the Loan }}$
So, in this example, for the $\mathbf{P M T}=$ line, you would type -(4700+1002)/36

The APR for this loan (rounded to the nearest half-percent), would be 13%.
4. Find the APR (annual percentage rate) - with add-on interest rate

Find the annual percentage rate (true annual interest rate), to the nearest half-percent, for a loan with purchase price of $\$ 4220$, down payment of $\$ 380$, add-on interest rate 5%, with 12 monthly payments.

Amount financed $=$ Purchase Price - Down Payment

$$
=4220-380=\$ 3840(\mathrm{PV})
$$

Again, this is a bit more work. Add-on interest rate allows you to determine the finance charge. Use the Simple Interest Formula ($I=P r t$) to get the finance charge (remember t is in years, not months):

Finance charge $=3840 \times .05 \times 1=\$ 192$

4. Find the APR (annual percentage rate) - with add-on interest rate (cont'd)

So monthly payment (PMT) would be: $-\frac{\text { Amount Financed }+ \text { Finance Charge }}{\text { Total months of the Loan }}$

So for the PMT= line, you would type $-(3840+192) / 12$

APR for this loan, rounded to the nearest half-percent, is 9%.

5. Find the Finance Charge and APR for a loan

> The cash price for a fitness system is $\$ 659.99$. The customer paid $\$ 115$ as a down payment. The remainder will be paid in 36 monthly installments of $\$ 19.16$ each. Find the amount of the finance charge and the APR for the loan.

To get the finance charge, you do not need to use TVM Solver yet.
Purchase Price - Down Payment = Amount Financed $659.99-115=\$ 544.99=$ Amount Financed (PV)

Monthly Payment \times Number of Payments $=$ Total Paid Back $19.16 \times 36=\$ 689.76=$ Total Paid Back

Total Paid Back - Amount Financed = Finance Charge $689.76-544.99=\$ 144.77=$ Finance Charge

The APR on this
loan is about $\mathbf{1 6 \%}$.

