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MATCONT: A MATLAB Package for Numerical
Bifurcation Analysis of ODEs

A. DHOOGE and W. GOVAERTS
Ghent University
and
YU. A. KUZNETSOV
Utrecht University

MATCONT is a graphical MATLAB software package for the interactive numerical study of dynamical
systems. It allows one to compute curves of equilibria, limit points, Hopf points, limit cycles, period
doubling bifurcation points of limit cycles, and fold bifurcation points of limit cycles. All curves are
computed by the same function that implements a prediction-correction continuation algorithm
based on the Moore-Penrose matrix pseudo-inverse. The continuation of bifurcation points of equi-
libria and limit cycles is based on bordering methods and minimally extended systems. Hence no
additional unknowns such as singular vectors and eigenvectors are used and no artificial sparsity
in the systems is created. The sparsity of the discretized systems for the computation of limit cy-
cles and their bifurcation points is exploited by using the standard Matlab sparse matrix methods.
The MATLAB environment makes the standard MATLAB Ordinary Differential Equations (ODE) Suite
interactively available and provides computational and visualization tools; it also eliminates the
compilation stage and so makes installation straightforward. Compared to other packages such as
AUTO and CONTENT, adding a new type of curves is easy in the MATLAB environment. We illustrate
this by a detailed description of the limit point curve type.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and analy-
sis; User interfaces; G.1.7 [Numerical Analysis]: Ordinary differential equations; J.2 [Physical
Sciences and Engineering]: Mathematics and Statistics

General Terms: Design

Additional Key Words and Phrases: Dynamical system, bifurcation, numerical continuation

1. INTRODUCTION

1.1 Some Mathematical Prerequisites

We consider generic parameterized autonomous ordinary differential equations
(ODEs) of the form

dx
dt
≡ ẋ = f (x, α), (1)
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where x ∈ Rn is the vector of state variables, α ∈ Rm represents parameters,
and f (x, α) ∈ Rn. Examples of systems of the form (1) are ubiquitous in mathe-
matical models in physics, engineering, chemistry, biology, economics, finance,
etc.

The image of the definition domain of a solution t 7→ x(t) of (1) is called an
orbit. The simplest orbits are the equilibria, that is, solutions of the equation

f (x, α) = 0. (2)

As is well known, an equilibrium x = x0 is asymptotically stable at α = α0 if
all eigenvalues of the Jacobian matrix f x(x0, α0) have a strictly negative real
part, and is unstable if there is at least one eigenvalue with a strictly positive
real part. In generic one-parameter problems, eigenvalues on the imaginary
axis appear in two ways: as a simple zero eigenvalue, or as a conjugate pair
±iω, ω > 0, of simple pure imaginary eigenvalues. The first case corresponds
to a fold, where two solutions coalesce and annihilate each other under param-
eter variation. The second case corresponds to a Hopf bifurcation, from which
periodic solutions emerge.

Periodic solutions are solutions for which x(T ) = x(0), for some number
T > 0. The minimal such T is called the period. Nontrivial periodic solutions
give rise to closed orbits (cycles) in the state space. The monodromy matrix is
the linearized T -shift along orbits of Equation (1), evaluated at a point of the
periodic solution. The eigenvalues of this matrix are the Floquet multipliers of
the periodic solution [Guckenheimer and Holmes 1983; Kuznetsov 1998].

A periodic solution always has a multiplier equal to 1. If all other multipliers
are strictly inside the unit circle in the complex plane, then the periodic solution
is asymptotically stable. If at least one multiplier has modulus greater than 1,
then the periodic solution is unstable. Three generic bifurcations, determined
by the monodromy matrix, can occur along a one-parameter curve of periodic
solutions, namely, the fold, the period-doubling (or flip) bifurcation, and the
torus (or Neimark-Sacker) bifurcation. At a fold, the multiplier 1 has algebraic
multiplicity 2 and geometric multiplicity 1. Generically, a fold corresponds to
a point on the periodic solution branch where the curve turns with respect to
the free problem parameter. At a period-doubling bifurcation point, there is a
simple multiplier equal to−1. Generically this indicates a period doubling of the
periodic solution, that is, there are nearby periodic solutions of approximately
double period. At a torus bifurcation, there is a simple conjugate pair of complex
eigenvalues with modulus 1. Generically this corresponds to a bifurcation to an
invariant torus, on which the flow contains periodic or quasiperiodic motion.

Curves of equilibria, periodic orbits, etc. can be computed using numerical
continuation which is the numerical pendant of homotopy methods. We consider
a general system of nonlinear equations

F (X ) = 0, (3)

where F (X ) ∈ RN is a smooth function of X ∈ RN+1. If X 0 is a solution of
Equation (3) and if the Jacobian matrix FX (X 0) has full rank N , then, by the
Implicit Function Theorem, Equation (3) has a curve of solutions that passes
through X 0. Numerical continuation produces a sequence of points on this curve

ACM Transactions on Mathematical Software, Vol. 29, No. 2, June 2003.
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to within a given accuracy. Most continuation packages use a tangent predic-
tor and a Newton-type corrector at each step, however, with slightly different
corrector algorithms, and therefore compute different points on the curve. The
convergence properties of the iteration are used to update the choice of the
stepsize. For background information, see Keller [1977], Doedel et al. [1991],
Allgower and Georg [1996], Beyn et al. [2002], Chapter 10 in Kuznetsov [1998],
and Chapter 2 in Govaerts [2000]. More details on a particular continuation
method implemented in MATCONT are given in Section 2.

To detect and accurately locate bifurcations along a computed curve, we need
test functions that have a regular zero at such bifurcation points.

For example, a possible test function for the fold bifurcation along a curve of
equilibria is the determinant function det( f x(x, α)). A test function for the Hopf
bifurcation is the determinant of the bialternate product matrix 2 fx¯In. If A, B
are n×n matrices, then A¯ B is an m×m matrix where m = n(n−1)/2. In the
case B = In, this square matrix with dimension n(n−1)

2 has only n(n−1)(2n−3)/2
functionally nonzero entries, so for large n it is rather sparse. For details see
Kuznetsov [1998] or Govaerts [2000].

If an additional parameter is freed, then we can compute curves of the de-
tected bifurcation type. For this purpose, we need defining systems, that is,
systems of equations whose regular solutions provide bifurcation points. The
test function itself is not necessarily a good choice for continuation. For example,
the determinant function suffers from ill-scaling, and its symbolic derivatives
are hard to compute. In MATCONT, curves are computed by minimally extended
defining systems. For example, the system for fold curves has the form{

f (x, α) = 0,
g (x, α) = 0, (4)

where g is obtained by solving(
f x(x, α) b

cT d

)(
v
g

)
=
(

0n
1

)
, (5)

and b, c ∈ Rn, d ∈ R are chosen such that the matrix in Equation (5) is non-
singular. An advantage of this method is that the derivatives of g with respect
to x and α can be obtained easily from the derivatives of fx . The method also
avoids the scaling problems [Govaerts 2000, §4.1.2].

1.2 Survey of Software

Three basic methods are used to study dynamical systems in applied modeling:

—simulation, including computation of Lyapunov exponents and dimensional
and spectral characteristics;

—continuation of special solutions and their stability boundaries: computing
one- or multiparameter families of equilibria [Henderson 2000], periodic or
homoclinic orbits, using pathfollowing techniques and detecting and contin-
uing critical (bifurcation) parameter values at which the system dynamic
changes qualitatively; and
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—normal form analysis: computing coefficients of reduced canonical equations
(normal forms) near critical parameter values to predict which solutions and
bifurcations are present locally to start their global continuation; understood
broadly, this includes averaging and multiple scaling techniques.

There are several interactive software packages for analysis of dynamical sys-
tems defined by ODEs. The most widely used are

(1) AUTO86/97 [Doedel et al. 1997]. Runs on UNIX workstations under X-
Windows and has a rudimentary graphical user interface (GUI). Supports
continuation of equilibrium and periodic and homoclinic solutions and their
bifurcations. Computationally advanced but very difficult to use; does not
provide any normal form analysis. The most recent version AUTO2000 is
written in C and has a command language interface based on the scripting
language Python.

(2) DSTOOL [Back et al. 1992]. Runs on UNIX workstations under X-Windows,
has a user-friendly tcl/tk-GUI and allows to vizualize computed data with
GEOMVIEW. Supports simulation and (limited) continuation analysis. Com-
putes one-dimensional invariant manifolds of fixed points. Has an extensive
documentation that is both developer- and user-oriented. Possible, but hard,
to extend.

(3) LOCBIF [Khibnik et al. 1993]. Runs as a DOS-application under MS-
Windows, has a simple GUI. Supports continuation of equilibrium and pe-
riodic solutions, as well as the normal form analysis of the simplest bifur-
cations of equilibria. Has many restrictions on the model complexity and a
closed architecture.

(4) CONTENT [Kuznetsov and Levitin 1995–1997]. Runs on UNIX workstations
under X-Windows with (Open)Motif and on PCs under Windows-95/NT. Has
a user-friendly GUI and an on-line hypertext help. Supports the continua-
tion of equilibrium and periodic solutions and their bifurcations, as well as
the normal form analysis of many bifurcations of equilibria and fixed points.
Allows one to use a special linear algebra C-library for each solution type.
Uses a very specific format to store the systems and results of computations.
Automatically generates partial derivatives of the system right-hand sides.
Possible, but hard, to extend.

(5) XPPAUT [Ermentrout 2002]. Runs on UNIX workstations, Windows, and
Mac OSX. Has a GUI with animation. Allows one to simulate ODEs, discon-
tinuous differential equations, delay equations and differential algebraic
equations, some BVPs and PDEs. Uses AUTO numerics for the continuation
of equilibrium and periodic solutions and their bifurcations.

These packages are mostly used at universities (in mathematics, physics, bi-
ology, and other departments). In industry, their usage is limited to chemical
engineering and some aerospace research. The main reason for this is that all of
these packages do not fit well into the standard engineering software environ-
ment. No one of these packages covers the whole range of solution types, while
data exchange between them is practically impossible due to individual data
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formats. They do not represent the results of the analysis in a form suitable for
standard control, identification, and visualization software.

We note that several existing packages use MATLAB in dynamical system com-
putations. Arnold and Polking [1999] described the use of simulation techniques
and invariant curve computations in MATLAB, and provided a software tool PPLANE

[Polking 1997–2003] for two-dimensional vector fields. Choe and Guckenheimer
[2000] described guidelines for building an interface between MATLAB and dy-
namic tools, mainly oriented toward the use of AUTO. De Feo [2000] provided a
tool MPLAUT to visualize the output of AUTO in MATLAB. Engelborghs et al. [2002]
described a nongraphical but very extensive MATLAB package DDE-BIFTOOL to com-
pute bifurcations of delay differential equations.

MATCONT is free MATLAB software available for download at

http://allserv.rug.ac.be/~ajdhooge/research.html.

The aim of the MATLAB software package MATCONT is to provide an interactive en-
vironment primarily designed for the continuation and normal form analysis
of dynamical systems. This analysis is complementary to the simulation of the
systems (which is also included in the package) and allows for more compre-
hensive understanding of their dynamics; it can be used in their identification,
control, and optimization.

MATCONT implements a starter-generator-processor technique to compute dif-
ferent solutions to a dynamical system and to switch between them. Its com-
putational kernel supports numerical continuation of regular curves implicitly
specified by defining functions in a continuation space. It monitors scalar test
functions, along a curve, and detects and locates critical parameter values,
where these functions change sign. Such bifurcation points are processed using
normal form computation to generate initial data for the continuation of other
solution curves. All these subroutines are programmed in MATLAB in terms of
the system right-hand sides and their partial derivatives.

MATCONT is a package under development that started with two master’s the-
ses [Riet 2000; Mestrom 2002]. In many respects it is similar to CONTENT, which
can be considered as a prototype for MATCONT. However, MATCONT is being com-
pletely redesigned and reimplemented to exploit the power of MATLAB. It is being
developed in parallel with the Continuation Toolbox CL MATCONT [Dhooge et al.
2000–2002], a package of routines that can be used from the MATLAB command
line. We note that CL MATCONT can be used in Matlab 5.3 while MATCONT requires
at least Matlab 6. CL MATCONT is more general in the sense that it can also be
used for other purposes, for example, the continuation of solutions to parame-
terized partial differential equations (PDEs) (upon a discretization).

The following functions are supported by the present version of MATCONT:

—continuation of equilibrium and periodic solutions with respect to a control
parameter;

—detection of fold, Hopf, and branching points on curves of equilibria;
—normal form analysis of fold and Hopf equilibrium bifurcations;
—branch switching at equilibrium branch points;
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—continuation of fold and Hopf equilibrium bifurcations in two control param-
eters;

—detection of all codim 2 equilibrium bifurcations (cusp, Bogdanov-Takens,
generalized Hopf, zero-Hopf, and double Hopf) on fold and Hopf curves;

—detection of fold, flip, and torus bifurcations of periodic solutions;
—continuation of the period doubled orbit in a flip bifurcation point; and
—continuation of flip, fold, and torus (Neimark–Sacker) bifurcations of periodic

orbits in two control parameters.

It is envisaged to include in the next versions:

—normal form analysis of all codim 2 equilibrium bifurcations;
—computation of one-dimensional invariant manifolds of equilibria;
—branch switching at cycle bifurcation points; and
—location and numerical continuation of orbits homoclinic to equilibria.

The GUI of MATCONT supports the following functions:

(1) specification of the initial solution to start the continuation (either by se-
lecting a previously computed solution or by on-line specification of a new
solution);

(2) selecting the solution type to continue;
(3) setting and modifying numerical parameters of the computation method

specific to the selected initial point and solution type;
(4) activating detection of possible bifurcations and user-defined functions;
(5) starting computation/browsing, allowing for termination and pausing;
(6) manipulating the database of computed results by deleting or renaming the

output files of the computations; and
(7) setting options for graphic windows to represent the computed solution

during and after the computation.

Context-dependent help on supported solutions and used algorithms is an
aim for future work.

2. NUMERICAL CONTINUATION IN MATCONT

All curves in MATCONT are computed by the same MATLAB-function that im-
plements a prediction-correction continuation algorithm based on the Moore-
Penrose matrix pseudoinverse.

Let A be an N × (N + 1) matrix with rank J = N . Recall that its Moore-
Penrose pseudoinverse is an (N + 1)× N matrix A+ defined by the formula

A+ = AT (AAT )−1.

ACM Transactions on Mathematical Software, Vol. 29, No. 2, June 2003.
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To compute A+b, b ∈ RN , efficiently, set up the system for x ∈ RN+1:{
Ax = b,

vT x = 0,
(6)

where v ∈ RN+1 is such that Av = 0. Then x = A+b is a solution to this system,
since AA+b = b, vT A+b = 0.

Consider now an implicitly defined curve

F (x) = 0, (7)

where the map F : RN+1 → RN is smooth. A tangent vector v(i) ∈ RN+1 to this
curve at point x(i) ∈ RN+1 satisfies

Fx(x(i))v(i) = 0.

Point x(i) is called regular if v(i) is unique (up to scaling). To compute regular
points on the curve and their associated tangent vectors, a predictor-corrector
method is implemented in MATCONT.

Prediction: Suppose that a point x(i) on the curve (or sufficently close to it) is
found. The prediction for the next point is tangential:

X 0 = x(i) + hiv(i).

For the next point x(i+1) ∈ RN+1 on the curve, one could solve{
F (x) = 0,

vT (x − X 0) = 0,

where v ∈ RN+1 satisfies Fx(x)v = 0 (the solution minimizes the distance be-
tween X 0 and the curve described by Equation (7)). The linearization of this
system about X 0 is {

Fx(X 0)(x − X 0) = 0,

(V 0)T (x − X 0) = 0,

where Fx(X 0)V 0 = 0. Thus

x = X 0 − F+x (X 0)F (X 0),

leading to the so called Moore-Penrose corrections:

X k+1 = X k − F+x (X k) f (X k), k = 0, 1, 2, . . .

(see Figure 1). Note that V k ∈ RN+1 satisfying Fx(X k)V k = 0 can be used
to compute F+x (X k) efficiently with the help of Equation (6). However, V k is
unknown and is approximated in MATCONT by a vector V k satisfying

Fx(X k−1)V k = 0, V 0 = v(i).

This yields the correction algorithm shown in Figure 2.
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Fig. 1. Moore-Penrose corrections.

Fig. 2. Correction algorithm implemented in MATCONT.

Corrections: Iterate for k = 0, 1, 2, . . . , kmax

A = Fx(X k), B =
(

A
V k T

)
,

R =
(

AV k

0

)
, Q =

(
F (X k)

0

)
,

W = V k − B−1 R, V k+1 = W
‖W‖ ,

X k+1 = X k − B−1 Q .

If ‖F (X k)‖ < ε f and ‖X k+1 − X k‖ < εx , then

x(i+1) = X k+1, v(i+1) = V k+1.

Here εx , ε f are convergence tolerances and kmax is the maximal number of
corrections allowed. One can prove that thus defined corrections converge, if
x(i) is a regular point on the curve and hi is sufficiently small.
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Fig. 3. Information flow in MATCONT.

Stepsize control: The next stepsize hi+1 is convergence-dependent. If the cor-
rections converge, denote by k the number of iterations. Then the new stepsize
is selected as

hi+1 =


Chi if not converged,
chi if converged and k < kthr ,
hi otherwise,

where c < 1 < C and kthr < kmax are certain constants.

3. DATA FLOW AND DATA STRUCTURES IN MATCONT

Figure 3 presents a sketch of the information flow in MATCONT. The package has
three databases. The user (GUI) can write directly to one of them, namely, the
database of System Descriptions. Here one can introduce new dynamical sys-
tems or make changes in existing ones. One can read directly from the database
of Computed Objects and Curves where one can study the computed results,
make plots, print them out, etc. The third database, Descriptions of Curve Types
is protected; the user has no direct access to it.

The computational work is performed either by the Integrators, which are the
standard MATLAB ODE solvers [Shampine and Reichelt 1997] or by the Contin-
uer, which is the general-purpose continuation algorithm described in Section 2.
Finally, the most active part of the package is the Master program, which in-
teracts in both directions with the GUI, the Continuer, and Integrators. Also,
it writes the output of the computations to the database of Computed Objects
and Curves. To make the environment fully interactive, the Continuer and the
Integrators also write directly to the GUI. This slows the computations down
somewhat; on the other hand, it gives the user more control, for example, to
interrupt the computations.

The root directory of MATCONT is the location of the Master program mat-
cont.m. The other files are kept in a number of separate directories which
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include at least the following three general-purpose directories:

—Continuer,
—GUI, and
—Systems.

Furthermore, there are directories specific to each type of curve that can be
computed (except Orbits). These include at least the following:

—Equilibrium,
—LimitPoint,
—Hopf,
—LimitCycle,
—PeriodDoubling, and
—LimitPointCycle.

(The list is growing.)
The fundamental global variables in the master program matcont.m are the

MATLAB structures gds and cds. The structure gds contains the information con-
cerning all windows open at a certain time and collects the information fed into
the system by the GUI. cds is needed in the GUI to store a computed curve from
whose points a new curve is to be started. Both gds and cds contain fields in
which computational options such as Increment, MaxNumPoints, . . . , are stored.

At the start of a new system, gds.options is empty. At the start of the com-
putation of a curve, the continuer presents a Starter window and a Contin-
uer window. The prefilled values in the Starter window are the default values
stored internally in the Continuer. On the other hand, the prefilled values in
the Continuer window are those that are given in gds if available. If they are
not available in gds, then default values are proposed. The user now has the
opportunity to change the fields in the Starter and Continuer windows. All
changes will be incorporated in the gds fields.

As a consequence, if the user afterwards computes another curve, then the
system will remember the values input by the user in the Continuer window,
but not those in the Starter window.

The fields gds.options.backward and cds.options.backward behave in a
somewhat different way because there is no effective default. The user chooses
the direction of computing by clicking the “compute forward/backward” button
in the MATCONT Main window and this effectively starts the continuation of the
curve.

The continuer now copies gds.options to cds.options and looks if every field
needed in cds.options is filled. If not, the continuer enters the default value.
A list of the fields and main subfields of gds and cds in a typical situation is
given in Appendices A and B.

The other global variables in MATCONT are specific to certain types of computed
curves. They are used to collect information from the computational routines so
that it can be stored in the database. In particular, eds, lpds, and hds contain
global information specific to the continuation of equilibria, limit points, and
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Hopf points, respectively. The structure lds, contains those for the continutation
of either limit cycles or period doubling bifurcation points of limit cycles. These
global variables also allow computational routines to share information.

The database of Computed Objects and Curves and the database of System
Descriptions are in the directory Systems. This directory contains a MATLAB

mat-file session.mat in which the GUI information is stored as it was left when
exiting MATCONT in the previous session. When restarting MATCONT, this file is
loaded and the exit situation of the previous session is restored. The file ses-
sion.mat contains the global variable sys of cont that is discussed in Section 5.

Information on computed objects and curves is also stored by MATCONT in the
directory Systems. For each studied system, say adapt2, the directory Systems
contains an m-file adapt2.m that contains the definition of the system, a mat-
file adapt2.mat in which the structure gds of the previous run of MATCONT with
the system adapt2 is stored and a directory adapt2 with information on the
curves is computed for the system adapt2.

To understand the nomenclature, we note that MATCONT distinguishes several
types of objects, among which (the list is growing) are the following:

—Point: label P,
—Equilibrium: label EP,
—Limit Point: label LP,
—Hopf Point: label H,
—Bogdanov-Takens Point: label BT,
—Zero-Hopf Point: label ZH,
—Double Hopf Point: label DH,
—Cusp Point: label CP,
—Generalized Hopf Point: label GH,
—Limit Cycle: label LC,
—Period Doubling Bifurcation of Limit Cycles: label PD,
—Limit Point of Cycles: label LPC, and
—Torus Bifurcation of Cycles: label NS.

MATCONT also distinguishes several types of curves. The list contains at present:
Orbits (label: O), Equilibrium, Limit Point, Hopf Point, Limit Cycle, Period
Doubling Bifurcation Point of Limit Cycles and Limit Point of Cycles. All these
labels have the same meaning as in CONTENT (see, e.g., Kuznetsov [1998] for a
theoretical background).

The curve type Orbit is special because it is computed by an Integrator rou-
tine while all other curves are computed by the Continuer.

In the subdirectory adapt2 of Systems, the curves computed for the system
adapt2 are stored as mat-files. This first includes the string variables point
and ctype that denote, respectively, the type of the starting point of the curve
and the type of the curve. For example, the combination H-LC indicates that
the curve is a curve of limit cycles which was started from a Hopf point. These
labels are also used to name the file of the computed curve. For example, the
first curve of the system adapt2 with labels H-LC is stored in the file H-LC(1)
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the subdirectory adapt2 of Systems. These names also appear in the SelectPoint
window, where the user has the option of renaming the curves.

Also, for each computed curve the arrays x,v and the array of structures
s are stored. Here x is simply the list of computed points, each column cor-
responding to a point. Similarly, v is the list of tangent vectors in the same
points. s is a one-dimensional array, each element of which is a structure that
corresponds to a special point on the curve. This structure has the following
fields :

—s.index: index of the singularity point in x and v.
—s.label: label of the singularity point, for example, LP, H.
—s.msg: a string that contains a message for this type of singularity.
—s.data: any kind of information that is useful in the further processing of this

type of singularity. For example, for Hopf points the critical eigenvalues, the
corresponding eigenvectors or the first Lyapunov coefficient might be stored
here.

Next, cds and the curve-type related global structures such as eds, lds, . . . ,
are stored. This allows the recovery of the values of the fixed parameters, the
location (in the parameter vector) of the free parameters, and the computational
settings and constants of the run.

4. THE GUI

The GUI is partially developed with GUIDE (the standard tool within MATLAB).
This tool can only be used for windows that remain fixed. For example, the
Continuer window was generated with GUIDE but the Starter window was
created manually because its layout depends on the type of the curve.

To illustrate the working of the GUI, we consider the question: How does
the GUI know what type of point the user has selected? Every object in the
windows of the GUI has a tag. If one selects Point and then Hopf in the main
MATCONT window, the following call will be made:

matcont(’point callback’)(the function ’point callback’ in the matcont.m
masterfile will be executed)—‘point callback’ contains the following code:

global gds;
tag=get(gcbo,’Tag’);[point,str]=strtok(tag,’_’);
if ~isempty(str)

if ~isempty(gds.type)
type=strcat(’_’,deblank(gds.type));

else
type=’’;

end
%does the current type appear in the list of possible types?
if isempty(findstr(str,type))

type=strtok(str,’_’);%the default type is chosen
else
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Table I. Types of Point and Their
Corresponding Tags Within the GUI

Types of point Tag
Point P O EP LP H
Equilibrium EP EP
Limit cycle LC LC
Period Doubling PD LC PD
Limitpoint of Cycles LPC LC LPC
Neimark-Sacker NS LC
Hopf H LC EP H
Limitpoint LP LP EP
Branching Point BP EP
Cusp CP LP
Bogdanov-Takens BT LP
Generalized Hopf GH H LC
Zero-Hopf ZH H LP
Double Hopf DH H

type=strtok(type,’_’);%the current curve type is chosen
end
feval(type,’point’,tag);

else
str=sprintf(’It isn’’t provided to start a continuation
from a %s point’,point);
errordlg(str);
end

In this code gcbo returns the handle of the object whose callback is currently
executing. The command tag=get(gcbo,’Tag’) gets the tag corresponding to
Hopf in Table I, namely, H LC EP H. This tag has the following meaning:

—H is the type of point (first H in the list).
—LC is the standard type of curve. The standard type will be chosen if the

current type of curve does not appear in the list of possible types of curve.
—The defaults LC, H, and EP are the possible types of curve.

Once the curve type is selected, the call feval(type,’point’,tag) is executed.
For every curve type, say, LC, there is a corresponding file LC.m that contains
information for the GUI. In LC.m the part if strcmp(arg,’point’) will be
executed. This part selects the curve types allowed from the point type. It also
calls LC(’type’). That part chooses the new curve name and loads the Main
window. It also loads the Continuer and Starter windows.

We now address the question: How does the GUI know which initializer to
use when the user starts a computation? If one selects “compute” and then
“forward” in the Main window of MATCONT, the call

matcont(’forward callback’)

is executed. This routine sets some options and makes a call to
matcont(’start cont’) which in turn calls feval(deblank(gds.type),
’start cont’). In our example this means that there will be call to the file
LC.m and that the part
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if strmp (arg,’start cont’)

will be executed. This part selects the appropriate initializer and starts the
Continuer. Thus, the following commands will be executed:

[x0,v0]=init_H_LC(gds.system,x0,par,gds.options.ActiveParams,
gds.amplitude,gds.discretization.ntst,gds.discretization.ncol);
[x,v,s,h,f]=cont(’limitcycle’,x0,v0,gds.options);

5. THE COMPUTATIONAL ROUTINES

MATLAB provides an excellent suite of ODE Integrators [Shampine and Reichelt
1997]. To provide a combined integration-continuation environment, we have
made them all accessible in MATCONT. The Integrator window is opened auto-
matically when the curve-type Orbits is selected and offers a default choice
of Integrator and parameters. The user has the option to make any desired
change. The orbit is plotted in real time if an appropriate two-dimensional (2D)
or three-dimensional (3D) window is opened.

We note that time simulation is not only important in its own right; in a
continuation environment, it can also be used to compute stable equilibria or
stable limit cycles from which the continuation can start to detect and compute
more complex phenomena.

Notice that the standard MATLAB routines odeset and odeget only support
Jacobian matrices coded symbolically in the ODE file. This is far too restric-
tive for our purposes. We therefore replaced them by compatible routines
(with the same names) that support derivatives with respect to parameters
as well as higher-order derivatives with respect to the state variables and
parameters.

The continuation kernel implementing the algorithm described in Section
2 is contained in the file cont.m in the directory Continuer. The global vari-
ables are cds and sys. sys is a structure with two fields, namely, sys.gui and
sys.file. sys.gui is a structure with five fields. sys.gui.pauseeachpoint,
sys.gui.pausenever and sys.gui.pausespecial are doubles that take on the
values 0 and 1, only. Two of them are 0, the remaining one is 1, and this governs
the stop-mode during the continuation of curves. sys.gui.ncurves corresponds
to the number of stored curves of particular type, and sys.gui.plot points is
the number of points that have to be calculated before they are plotted. Next,
sys.file is a character string of the form example.mat, where “example” is the
name of the last system loaded by MATCONT.

For a given curve type, a number ns of possible bifurcations is signaled and
labeled in the Description of Curve Type and a number nt of test functions is
provided. Detection and computation of singularities are based on a Singularity
Matrix, S which is an (ns × nt)-matrix also given in the Description of Curve
Type.

A singularity is not always fully characterized by the vanish at a single
test function. It may require that other test functions also vanish or, on the
contrary, do not vanish. The convention is as follows. If S(i, j ) = 0, then the
j th test function must vanish in a bifurcation of type i. If S(i, j ) = 1, then it
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must not vanish. If S(i, j ) is not 0 or 1, then the test function is not relevant to
the bifurcation. An example is given in Section 6.

For every single run, the user can choose the bifurcation to be detected on
the computed curve; these are the active bifurcations. Using this information
and the Singularity Matrix, the Continuer makes a list of test functions that
are to be monitored; these are the active test functions.

A vector of values of active test functions is computed at every computed point
along the curve and compared with the vector in the previous point. If there
are no sign changes, then no further action is taken. If there are sign changes,
then the active bifurcations are considered consecutively. Suppose that j is the
index of an active bifurcation. If there is a test function ti for which S(i, j ) = 0
and ti does not change sign, then there is no further action with regard to
bifurcation j . In the opposite case, the next step is to locate the zeros of all test
functions ti for which S(i, j ) = 0 by a bisection method. If this process fails to
converge for at least one test function, then an error message is printed and
no further action is taken. In the opposite case, the distance between the zeros
is considered. If it is larger than a certain threshold, then no further action is
taken. If the distance is smaller than the threshold, then the located points are
merged by simply taking arithmetic means of their coordinate values. If the
absolute value of one of the test functions ti for which S(i, j ) = 1 is larger than
a given threshold, then no further action is taken. In the remaining case, the
bifurcation is declared to have been detected and the located point is stored,
appropriately labeled, and considered as a “special point” on the curve.

We note that there are exceptional cases where the location of bifurcation
points by the above standard method may be problematic. This is mainly the
case if the bifurcation itself is nongeneric and appears because the dynamical
system has a special structure or symmetries. A typical example is the appear-
ance of a branching point on a curve of equilibria in the presence of symmetry.
To overcome this difficulty, a special “locator” algorithm can be provided in the
Description of Curve Type.

The computation of curves of Limit Points and Hopf points is based on the
bordered Jacobian and bordered squared Jacobian methods, respectively, as
described in Govaerts et al. [1998] and implemented in CONTENT.

For the computation of limit cycles, a discretization based on orthogonal col-
location [Ascher et al. 1979; De Boor and Swartz 1973; Russell and Christiansen
1978] is used, essentially the same as in AUTO and CONTENT. The algorithms for
the continuation of period doubling and fold bifurcation points of limit cycles
are new; they have been analyzed in detail in [Doedel et al. 2003] but have
never before been implemented in any standard software.

6. DESCRIPTION OF CURVE TYPES

To show the flexibility of MATCONT, we give some details of the implementation
LimitPoint curve. This involves several tasks:

—Introduce a directory LimitPoint and set the path, that is, add a line
addpath([cd ’/LimitPoint/’]); to the file matcont.m.
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—Introduce a structure lpds that will be global in cont.m and the computational
routines in the LimitPoint directory.

—Write the initializers that allow to start the curve from the appropriate start-
ing points; in this case only a LimitPoint fits the description. The correspond-
ing file is called init LP LP.m.

—Write the computational routine, a MATLAB m-file named limitpoint.m that
defines Limit Points.

—Make a file LP.m to handle the new type of curves in MATCONT. LP.m contains
the information about the appearance of the LP-related windows in the GUI.
We note that, for example, the starter windows for the LP and LC curves are
different.

We now go into detail. Since the bordering vectors are essential in the defi-
nition of the LP points, they are included in lpds. The fields lpds.borders.v,
lpds.borders.w contain approximations vbor , wbor to the right and left singular
vectors of the Jacobian matrix of the system in a LP point, respectively. They
are kept constant during the computation of a continuation point and during
the processing of special points; however, they can be adapted between such
tasks. The main task of init LP LP.m is, in fact, to initialize these two vectors.

In the file limitpoint.m, we have to provide the possibility to compute the
defining system for Limit Points by the call limitpoint(X) where X is a vector
of doubles (which contains the state variables of (1) and two free parameters).
Now an LP point is characterized by the fact that it is an equilibrium and that
the scalar g , defined by solving(

fx wbor

vT
bor 0

)(
v
g

)
=
(

0n

1

)
, (8)

is zero (v is an n-vector). The output of a call to limitpoint(X) is a vector with
n+ 1 components, namely: (

f (x, α)
g

)
.

In the file limitpoint.m, we also have to provide the possibility to compute
the derivatives of the defining system for Limit Points with respect to the state
variables and active parameters by the call limitpoint(’jacobian’,X). Now
the derivatives of the first n components, that is, the equilibrium equations, are
simply the Jacobian values. The derivatives of g are given by

gz = −wT ( f x)zv,

where z is a state variable or an active parameter and w is obtained by solving(
f T

x vbor

wT
bor 0

)(
w
g

)
=
(

0n

1

)
, (9)

the transposed system of Equation (8) [Govaerts 2000, §4.1.2].
There is no need for the values of the Hessian of limitpoint(x), so we can

leave the content of limitpoint(’hessian’,X) empty.
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The call limitpoint(’defaultprocessor’,X) allows one to do any de-
sired postprocessing on the computed LP points. At present it computes all
eigenvalues.

Three generic bifurcations can be encountered along this curve: BT, ZH, CP.
We note that the order is fixed in the singularity matrix. The test functions are
as follows:

—φ1 = wT v,
—φ2 = det(2 fx ¯ In), and
—φ3 = wT fxxvv.

In these expressions, v, w are the vectors computed in Equations (8) and
(9), respectively, and 2 f x ¯ In is the bialternate matrix product discussed in
Section 1.

We note that the order of the test functions is again fixed in the singularity
matrix. The values of the testfunctions are called by

limitpoint(’testf’,X,V).

The Singularity Matrix is provided by the call

limitpoint(’singmat’,X,V).

In our case,

S =
 0 0 8

1 0 8
8 8 0

 .
Indeed, φ2 vanishes in BT points as well as in ZH points; on the other hand, φ1
vanishes in BT points but not in ZH points. This is sufficient to distinguish the
two cases.

The call

limitpoint(’locate’,si,X1,V1,X2,V2)

invokes the locator algorithm for the bifurcation with index si in the part of the
curve between (x1, v1) and (x2, v2). We note that v1, v2 are the tangent vectors
in x1, x2, respectively but these may not really be provided. At present the
curve-type LimitPoint does not provide any locators (the curve-type equilibrium
provides a locator for branching points).

The call

limitpoint(’adapt’,X,V)

allows one to update the auxiliary variables used in the defining system of the
computed branch. In the case of LP points, the bordering vectors lpds.bor-
ders.v and lpds.borders.w may require updating since they must at least
be such that the matrices in Equations (8) and (9) are nonsingular. Updating
is done by replacing lpds.borders.v and lpds.borders.w by the normalized
vectors v, w computed in Equations (8) and (9), respectively.
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During the computation of a curve, it is sometimes necessary to introduce
variables and do additional computations that are common to all points of the
curve. These can be relegated to a call of the type

limitpoint(’init’,X,V).

This option has to be provided only if the variable WorkSpace in cds.options is
switched on. In this case a call

limitpoint(’done’,X,V)

must clear the workspace. Variables in the workspace must be set global.
In the present version of MATCONT, this facility is used to compute det

(2 f x ¯ In) without loops. In the workspace, we construct ( n(n−1)
2 , n(n−1)

2 ) matri-
ces eds.BiAlt M1, eds.BiAlt M2, and eds.BiAlt M3, whose entries are integers
between 1 and n2 + 1.

In the main program, the Jacobian matrix is expanded to an (n, n+ 1) ma-
trix A by adding a zero column. Computing A(eds.BiAlt M1) then amounts to
replacing each entry of eds.BiAlt M1 with value i by the value A(i) where A(i)
is found by ordering the elements of A columnwise. The details of the construc-
tion are such that A(eds.BiAlt M1)−A(eds.BiAlt M2)+A(eds.BiAlt M3) yields
2 f x ¯ In. MATLAB allows one to use sparse matrices in this construction, so we
exploit the sparsity of 2 f x ¯ In efficiently.

7. USER ACTIONS AND AN EXAMPLE

The user starts a MATCONT session by typing matcont in the MATLAB command
window. This sets the path to all needed directories and opens the MATCONT

Main window. Usually many other windows will also be opened since the sys-
tem restarts at the point where it was last exited. See Figure 4 for a typical
example. In this figure an equilibrium curve of the system adapt2 is being
computed.
One possible action is to introduce a new system or change or load an ex-

isting one in the SelectSystemsNew window, SelectSystemsEdit, or SelectSys-
temsLoad windows, respectively. The SelectSystemsEdit window of the system
adapt2 is presented in Figure 5. Filling the fields is straightforward since the
MATLAB syntax is used. We note that it is not allowed to leave blanks when filling
the SelectSystems windows.

Derivatives of f (x, α) are often needed. The user has three choices. The
first- and second-order derivatives can be provided manually in the SelectSys-
temsEdit window (jacobianp and hessianp refer to derivatives with respect to
the parameters). This is a feasible option for simple systems with few variables
and parameters. The next option depends on whether the Symbolic Toolbox of
MATLAB is available or not. If it is not installed, then the option is to introduce
derivatives from a file; at present this is possible for derivatives up to third
order. Such files can be generated by any symbolic package, for example, MAPLE.
If the Symbolic Toolbox of MATLAB is installed, the derivatives are computed
symbolically and the results are pasted in the ODE file. Finally, if no symbolic
derivatives are available, then MATCONT uses finite difference approximations
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Fig. 4. Example of the Main, Continuer, EP-Starter, and Stop windows of MATCONT.

instead. In Figure 5, the first-order derivatives are input by the user while the
second-order derivatives are read from file.

Another possible action from the MATCONT Main window is to select an initial
point. This opens the SelectPoint window where the user gets a list of computed
curves and special points found on these curves. The first and last points on
each curve are also considered special. In the SelectCurve window, the user can
delete or rename curves.

Suppose that in our example a curve of limit cycles is to be started from the
Hopf point detected in the run presented in Figure 4. Then the user selects
“initial point” from the Type menu of the MATCONT Main window. This offers
a menu of curves consisting of possible types of initial points where the user
chooses Hopf from the EP EP(3) curve. The default curve to start from a Hopf
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Fig. 5. Example of the SelectSystemsEdit window for the system adapt2.

point is an LC curve (selecting Type menu of the Main window leads to the
choice between a Hopf curve and a LimitCycle curve). The Starter window and
the Continuer window for limit cycles now appear. The former contains fields
with the initial values for the state variables and parameters of the problem,
the increment value (used in the finite difference approximations if any are
needed), and the number of test intervals and collocation points for the dis-
cretization of the limit cycles. Also, there are buttons that allow choosing which
bifurcations are to be detected and whether or not multipliers will be com-
puted. The Continuer window contains parameter and threshold values for the
Continuer routine and the maximum number of points to be computed. The
numbers in the fields Adapt and ClosedCurve indicate after how many points
the adapter routine and the check for a closed curve will be called (a zero means
no call at all). All these fields are prefilled with values that are either defaults
or filled in previous runs or from selecting an initial point.

The computations are started by clicking the “compute” button on the Main
window. In most cases, a curve can be continued in one of two directions;
therefore a further choice between forward and backward is offered. In a few
cases, like starting a LimitCycle curve from a Hopf point, only one direction is
meaningful and, therefore, forward and backward have the same meaning.
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Fig. 6. Doubled period limit cycle curve started from a Period Doubling bifurcation point.

The output of the computations can be presented in real time either in nu-
meric form or in 2D or 3D graphical form by clicking the “window” button on the
Main window. In Figure 6 a 3D plot is presented. It is the result of the LimitCy-
cle continuation started from a PD point detected in the previously described
LimitCycle continuation started from a Hopf point.

The user can interact with the computations in two ways. First, the Main
window has a field options that allow one to choose the pause mode. The Contin-
uer can pause after each computed point, at special points only (the default) or
not at all. Second, starting the computations automatically opens a small win-
dow in the bottom left corner of the screen with buttons “pause,” “resume,” and
“stop” (moved to the right in Figure 2). Pressing these buttons during the com-
putation has the corresponding effect on the ongoing computations. In Figure 4
the status is “pause” because a special point is detected. The user can stop or re-
sume the continuation by pressing the “stop” or “resume” button, respectively.
The “pause,” “resume,” and “stop” buttons can also be invoked by pressing a
corresponding accelerator key.

APPENDIX

A. THE GDS FIELDS IN MATCONT

gds = gds.options =
coordinates: 4x2 cell InitStepsize: []
parameters: 9x2 cell MinStepsize: []
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time: ’t’ [0] MaxStepsize: 1
options: [1x1 struct] MaxCorrIters: []
system: ’HodgkinHuxley’ MaxNewtonIters: []
curve: [1x1 struct] MaxTestIters: []
equations: [14x62 char] MoorePenrose: []
dim: 4 SymDerivative: []
der: [4x5 double] SymDerivativeP: []
jac: ” Increment: 1.0000e-005
jacp: ” FunTolerance: []
hess: ” VarTolerance: []
hessp: ” TestTolerance: []
point: ’EP ’ Singularities: 1
type: ’EP ’ MaxNumPoints: 300
discretization: [1x1 struct] Backward: 0
period: 1 CheckClosed: []
plot2: [1x2 struct] TestFunctions: []
plot3: ” WorkSpace: []
open: [1x1 struct] Locators: []
integrator: [1x1 struct] Adapt: []
numeric: [1x1 struct] IgnoreSingularity: []
der3: ” ActiveParams: 2
der4: ” Multipliers: 1
der5: ” Eigenvalues: 1

Userfunctions: 0
UserfunctionsInfo: []

APPENDIX

B. THE CDS FIELDS IN MATCONT

cds = cds.options =
curve: ’equilibrium’ InitStepsize: []
ndim: 5 MinStepsize: []
options: [1x1 struct] MaxStepsize: 1
h: 1 MaxCorrIters: 10
h max: 1 MaxNewtonIters: 3
h min: 1.0000e-005 MaxTestIters: 10
pJac: [4x5 double] MoorePenrose: 1
pJacX: [5x1 double] SymDerivative: 0
h inc fac: 1.3000 SymDerivativeP: 0
h dec fac: 0.5000 Increment: 1.0000e-005
nActTest: 3 FunTolerance: 1.0000e-006
S: [3x3 double] VarTolerance: 1.0000e-006
nSing: 3 TestTolerance: 1.0000e-005
nTest: 3 Singularities: 1
ActSing: [1 2 3] MaxNumPoints: 300
nActSing: 3 Backward: 0
ActTest: [1 2 3] CheckClosed: []
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SZ: [2x4 double] TestFunctions: []
atv: 1 WorkSpace: 1
testvals: [2x3 double] Locators: [0 0 0]
testzero: [5x3 double] Adapt: 0
testvzero: [5x3 double] IgnoreSingularity: []

ActiveParams: 2
Multipliers: 1
Eigenvalues: 1
Userfunctions: 0
UserfunctionsInfo: []

ACKNOWLEDGMENT

The authors thank Oscar De Feo (EPFL, Lausanne, Switzerland) for several
helpful remarks.

REFERENCES

ALLGOWER, E. L. AND GEORG, K. 1996. Numerical path following. In Handbook of Numerical Anal-
ysis 5, P. G. Ciarlet and J. L. Lions, Eds. North-Holland, Amsterdam, The Neatherlands.

ARNOLD, D. AND POLKING, J. C. 1999. Ordinary Differential Equations using MATLAB, 2nd ed.
Prentice-Hall, Englewood Cliffs, NJ.

ASCHER, U. M., CHRISTIANSEN, J., AND RUSSELL, R. D. 1979. A collocation solver for mixed order
systems of boundary value problems. Math. Comp. 33, 146, 659–679.

BACK, A., GUCKENHEIMER, J., MYERS, M. R., WICKLIN, F. J., AND WORFOLK, P. A. 1992. DSTOOL: Com-
puter assisted exploration of dynamical systems. Notices Amer. Math. Soc. 39, April, 303–309.

BEYN, W.-J., CHAMPNEYS, A., DOEDEL, E., GOVAERTS, W., KUZNETSOV, YU. A., AND SANDSTEDE, B. 2002.
Numerical continuation, and computation of normal forms. In Handbook of Dynamical Systems,
Vol. II, B. Fiedler, ed. Elsevier, Amsterdam, The Netherlands, 149–219.

CHOE, W. G. AND GUCKENHEIMER, J. 2000. Using dynamical system tools in MATLAB. In Numerical
Methods for Bifurcation Problems and Large-Scale Dynamical Systems, IMA Vol. 119, E. J. Doedel
and L. S. Tuckerman, Eds. Springer, New York, NY. 85–113.

DE BOOR, C. AND SWARTZ, B. 1973. Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 4,
582–606.

DE FEO, O. 2000. MPLAUT: A MATLAB visualization software for AUTO97. EPFL, Lausanne,
Switzerland. Available at http://www.math.uu.nl/people/kuznet/cm.

DHOOGE, A., GOVAERTS, W., KUZNETSOV, YU. A., MESTROM, W., AND RIET, A. 2000–2002. CL MATCONT :
A Continuation Toolbox in MATLAB. In Proceedings of the 2003 ACM Symposium on Applied
Computing (Melbourne, FL), 161–166. Software available at: http://www.math.uu.nl/people/
kuznet/cm.

DOEDEL, E. J., CHAMPNEYS, A. R., FAIRGRIEVE, T. F., KUZNETSOV, YU. A., SANDSTEDE, B., AND WANG,
X. J. 1997. AUTO97: Continuation and bifurcation software for ordinary differential equa-
tions (with HomCont), user’s guide. Concordia University, Montreal, P.Q., Canada. Available
at http://indy.cs.concordia.ca.

DOEDEL, E., GOVAERTS, W., AND KUZNETSOV, YU. A. 2003. Computation of periodic solution bifurca-
tions in ODEs using bordered systems. SIAM J. Numer. Anal. To appear.
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