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Elastic net-based framework for imaging
mass spectrometry data biomarker
selection and classification
Fengqing (Zoe) Zhanga ‡ and Don Honga,b∗†

Imaging mass spectrometry (IMS) shows great potential for the rapid mapping of protein localization and
for detecting of sizeable differences in protein expression. However, data processing remains challenging due
to the difficulty of analyzing high dimensionality, the fact that the number of predictors is significantly larger
than the number of observations, and the need to consider both spectral and spatial information in order
to represent the advantage of IMS technology. Ideally one would like to efficiently analyze all acquired data
to find trace features based on both spectral and spatial patterns. Therefore, biomarker selection from IMS
data is a problem of global optimization. A recently developed regularization and variable selection method,
elastic net (EN), produces a sparse model with admirable prediction accuracy and can be an effective tool for
IMS data processing. In this paper, we incorporate a spatial penalty term into the EN model and develop a
new tool for IMS data biomarker selection and classification. A comprehensive IMS data processing software
package, called EN4IMS, is also presented. The results of applying our method to both simulated and real
data show that the EN4IMS algorithm works efficiently and effectively for IMS data processing: producing
a more precise listing of selected peaks, helping confirmation of new potential biomarkers discovery, and
providing more accurate classification results. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

New advances in mass spectrometry (MS), such as matrix-assisted laser desorption ionization (MALDI)
time-of-flight (TOF) MS, surface-enhanced laser desorption/ionization (SELDI) TOF MS, and imaging
mass spectrometry (IMS), have greatly enhanced the opportunity for proteomics to be used for investiga-
tive studies of molecular interactions in intact tissue with excellent molecular specificity. Particularly,
MALDI IMS has emerged as a powerful technique for analyzing the spatial distribution of proteins
directly in tissue specimens [1]. Current interest in MALDI IMS lies in the unique advantage of corre-
lating histological information as determined by a pathologist with the spatially resolved biochemical
information provided by the IMS experiments. Advances are being made in all areas of MALDI IMS,
including in how sample preparation techniques, instrument design and data analysis, a comprehensive
structural and molecular analysis can be performed in a high-throughput and reproducible manner. IMS
has broad applications for studying the spatial distribution of lipids [2], peptides [3], proteins [4], and
small molecules with their metabolites [5] in tissue sections. In such instances, IMS helps to find the
biomedical changes related with several diseases, especially multiple forms of cancer [6--8].

However, each MALDI IMS data set is multidimensional and has hundreds of pixels associating a
complete mass spectrum with each of them. This contrasts with regular images where for each pixel
there is a set of RGB values. Each mass spectrum contains mass-to-charge (m/z) values ranging from
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2k to 70kDa and ion intensity values that are associated with each pixel. There are hundreds of mass
spectra represented in a single MS image. In this case, the number of predictors (m/z values) is much
larger than the number of observations (the number of spectra). To fully utilize IMS data, it is desirable
to not only identify the peaks of the spectrum within individual pixels, but also to study correlation and
distribution using the spatial information of the entire image cube. Another important distinction that
should be made is to determine whether the m/z values selected as potential biomarkers are caused
by the biological structure of the tissues or by the disease state being investigated. All of these issues
compounded together pose great challenges in IMS data processing and statistical analysis.

MALDI IMS software packages such as BioMap as well as many other software tools for IMS
do not provide multivariate analysis (MVA) methods. Usually, a common way to visualize IMS data
is to generate two-dimensional ion intensity maps for known m/z values of interest [9]. However,
a more important application should be the determination of unknown variants for metabolite and
protein profiling in both clinical and disease studies. Such mature analysis methods have not yet
been implemented in the current commercial software. The IMS community has begun exploring and
comparing a few MVA methods, such as principal component analysis (PCA), linear discriminant
analysis (LDA), and clustering methods with IMS data analysis [10]. The use of PCA in analyzing
IMS data has been proposed to identify both spatial and mass trends that can merit further investigation
[11]. Also, LDA, multivariate analysis of variance (MANOVA), and clustering methods have been used
to analyze the IMS data [12]. PCA and clustering are most commonly used for IMS data [13, 14].
Plas et al. [15] proposed to use peak intensity-based PCA to process IMS data. Correlation calculation
for ion images, both in and between serial sections, was studied in [16]. PCA and support vector
machine (SVM) were also combined to process IMS data in [17]. However, these methods for IMS
data processing are inadequate due to their limited use of spatial information and the advantages of
IMS technology (see Section 2.3.3 for a more detailed discussion).

A newly developed variable selection method, called elastic net (EN), can simultaneously perform
automatic variable selection and continuous shrinkage [18]. That is, it can continuously shrink the
coefficients toward zero as its regularization parameters increase; some coefficients are shrunk to exactly
zero if the regularization parameters are sufficiently large [18--20]. The shrinkage often improves the
prediction accuracy due to the bias-variance trade-off. Thus, the EN model simultaneously achieves
accuracy and sparsity. The achievement of sparsity is particularly useful when the number of variables
(p) is much larger than the number of observations (n). In addition, the EN model encourages a grouping
effect, where strongly correlated predictors tend to be in or out of the model together. Compared with
other current commonly used analysis methods, the EN model is much more suitable for IMS data
processing. In this paper, we incorporate a spatial penalty term into the EN model in order to develop a
new tool for IMS data biomarker selection and classification. Our motivation is to fully utilize not only
the spectral information within individual pixels, but also the spatial information for the entire IMS data
cube. A software package for comprehensive IMS data processing, called EN4IMS, is developed based
on this new model. By incorporating the spatial penalty term, this package helps to distinguish the IMS
feature peaks caused by biological structural differences from those truly associated with cancer.

The proposed EN4IMS method has been tested on extensive simulation studies, and the algorithm
has also been applied to two real IMS data sets: one with relatively low resolution and other with
higher resolution. Both data sets were provided by Vanderbilt University Mass Spectrometry Research
Center (VUMSRC). The analysis results of both simulation studies and real data examples show that
the EN4IMS algorithm works efficiently and effectively for IMS data processing: producing a more
precise listing of feature peaks, help in discovering new potential biomarkers, and providing more
accurate classification results. A set of our selected features with interesting biological explanations
has been identified following a series of experiments.

2. Methods

2.1. Data interpretation

MALDI IMS offers the potential for direct examination of biomolecular patterns from cells and tissues.
This makes it a seemingly ideal tool for biomedical diagnostics and molecular histology [21]. To obtain
the MALDI IMS data, thin frozen sections (10−15�m thick) are cut, thaw-mounted on target plates
and subsequently an energy absorbing matrix is applied. Areas, typically having a target spot size of
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about 50�m in diameter, are ablated with an UV laser, and give rise to ionic molecular species that
are recorded according to their mass-to-charge (m/z) values. Thus, a single mass spectrum is acquired
from each ablated spot (pixel) in the array. Signal intensities at specific m/z values can be exported
from this array to produce a two-dimensional ion intensity map, or ion image, constructed from the
specific coordinate location of that signal and its corresponding relative abundance.

For high-resolution images, a matrix is deposited on a homogeneous manner to the surface of the
tissue in such a way as to minimize the lateral dispersion of molecules of interest. This can be achieved
either by automatically printing arrays of small droplets or by robotically spraying a continuous coating.
Each micro spot, or pixel coordinate, is then automatically analyzed by MALDI MS. From the analysis
of a single section, images at virtually any molecular weight may be obtained, provided there is sufficient
signal intensity to record. The relatively low-resolution IMS data set in our study has 35×24 pixels,
whereas the higher resolution IMS data set has 65×44 pixels. The spectrum associated with each pixel
has over 30 000 m/z values and corresponding signal intensities. The high dimensionality in IMS data
processing is often a very challenging issue.

Figure 1(a) shows the photomicrograph of a cresyl violet-stained mouse brain section, implanted
with a GL26 glioma cell line and tumor growth. The darker region in the right hemisphere of the brain
indicates the presence of the tumor. IMS data can be viewed as a three-mode array (data cube) with
two spatial dimensions (x-, y-dimension) and the ion intensity values associated with m/z dimension
as shown in Figure 1(b). The IMS data obtained from a serial section of the brain tissue is represented
by mass spectra taken from each (x, y) coordinate or pixel. Figure 1(c) displays the mass spectrum at a
single pixel. For each fixed m/z value, the false color image based on the ion intensity at each pixel is
the ion image. Figure 1(d) depicts the 3D visualization of IMS data by showing five selected ion images.
In Figure 1(d), pixel x coordinate, y coordinate, and m/z value are used to form a three-dimensional
array, and then the intensity, represented by color, becomes a function value of these three variables.
The five selected ion images shown in Figure 1(d) are produced by the MATLAB functions meshgrid,
which can be used to represent volumetric data, and slice, which can be used to slice planes through
volumetric data.

The spatial information provided by IMS is very helpful in the visual mapping of protein localization
and the detection of sizeable differences in protein expression [22, 23]. Conventional MALDI MS
data do not identify the spatially localized correlations between mass analytes that are latent in IMS
data processing. Therefore, in IMS data processing it is advantageous to use both spectral and spatial
information for feature extraction, even though doing so presents great challenges.

To fully utilize IMS data, it is desirable not only to identify the peaks of the spectrum within
individual pixels, but also to study correlation and distribution using the spatial information for the
entire image cube. It is also important to distinguish the selected feature m/z values according to
the differences caused by biological structures of the tissue or purely by cancer. The combination of
spatial information and mass resolution results in large and complex data sets and therefore presents a
serious challenge in developing bioinformatics tools for the quantitative analysis and for the biological
interpretation of the IMS data.

2.2. EN model and LAR-EN algorithm

The usual linear regression model can be described as follows.
Assuming p predictors x1, . . . ,xp , the response y is predicted by

ŷ= �̂0+x1�̂1+·· ·+xp�̂p. (1)

Given a data set, a model fitting procedure produces the vector of coefficients �̂= (�̂0, . . . , �̂p)
T. Ordinary

least squares (OLS) estimates are obtained by minimizing the residual sum of squares (RSS). Ridge
Regression minimizes the RSS subject to a bound on the �2 norm of the coefficients

�̂=argmin�‖y−X�‖22+�2‖�‖22,
where X= (x1, . . . ,xp) denotes the predictor matrix, and the penalty term associated with ‖�‖22=∑p

j=1�2
j is also called the ridge penalty term. �2 is a non-negative tuning/regularization parameter.

The so-called lasso method minimizes the RSS subject to a bound on the �1 norm of the coefficients

�̂=argmin�‖y−X�‖22+�1‖�‖1,
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Figure 1. Mouse brain IMS data: (a) photomicrograph of a mouse brain section, implanted with a tumor
growth; (b) the three-mode array representation of IMS data set with two spatial dimensions (x, y) and the
m/z dimension; (c) an individual mass spectrum behind one pixel; and (d) the data cube visualization of IMS

data set by showing five selected ion images.

where the penalty term associated with ‖�‖1=∑p
j=1 |� j | is usually called the lasso penalty term. �1

is a non-negative tuning/regularization parameter. If the number of predictors, p, is greater than the
number of observations, n, the lasso selects at most n variables. The number of selected predictors is
bounded by the number of observations. In addition, the lasso fails to conduct grouped selection. That
is, it tends to select one variable from a group and ignore others. However, the EN [18], a convex
combination of the lasso and ridge penalty, typically outperforms them in many situations. The EN
method is particularly useful in the case where p�n. It also encourages a grouping effect where
strongly correlated predictors tend to be in or out of the model together.

The naive EN criterion is to minimize the following functional [18]:

L(�1,�2,�)=‖y−X�‖22+�1‖�‖1+�2‖�‖22. (2)

The �1 component of the penalty functional generates a sparse model, while the quadratic part removes
the limitation on the number of selected variables, encourages a grouping effect, and stabilizes the �1
regularization path. The non-negative tuning/regularization parameters �1 and �2 balance the goodness-
of-fit and complexity of the model. Zou et al. [18] mentioned the naive EN appears to incur a double
amount of shrinkage, which does not help to reduce the variances much and introduces an unnecessary
extra bias, compared with pure lasso or ridge shrinkage. Therefore, the EN estimates �̂ are defined by
�̂(elastic net)= (1+�2)�̂(naive elastic net), which means that the EN coefficients are rescaled naive EN
coefficients. Such a scaling transformation, namely, multiplying the naive EN coefficients by 1+�2,
removes the 1/(1+�2) shrinkage from ridge regression and overcomes the double shrinkage deficiency
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of the naive EN (see [18] for details). Finally, the EN estimates �̂ are given by

�̂=argmin��
T((XTX+�2I)/(1+�2))�−2yTX�+�1‖�‖1.

Efron et al. [24] proved that, starting from zero, the lasso solution paths grow piecewise linearly in a
predictable manner, and a new algorithm called LARS was proposed to solve the entire lasso solution
path efficiently by using the same order of computations as a single OLS fitting. For each fixed �2, the
EN problem is equivalent to a lasso problem on an augmented data set. The algorithm LARS-EN was
proposed in [18] to solve the EN efficiently based on the algorithm LARS.

2.3. EN4IMS model and its algorithm

In this section, we incorporate a spatial penalty term into the EN model in order to develop a new
tool for IMS data biomarker selection and classification. Our motivation is to fully utilize not only the
spectral information within individual pixels, but also the spatial information for the entire IMS data
cube. A software package for comprehensive IMS data processing, called EN4IMS, is developed based
on this new model.

2.3.1. Spatial penalty term. The importance of fully utilizing spatial information provided by IMS
techniques has been emphasized in the recent literature (see [10, 12, 16] for example). Thus, we want to
develop an algorithm of biomarker selection and classification that combines the spectral information
within individual pixels with the spatial information for the entire IMS data set. It is also important to
distinguish the selected m/z values according to the differences caused by biological structures of the
tissue or by disease. The true cancer biomarkers can be effectively related to the cancer tissues and can
potentially be used for cancer diagnosis. Therefore, it is critical to consider the spatial information in
order to find the cancer-related features independent of tissue structures in IMS data processing.

In IMS data analysis, if a selected m/z value is truly associated with the disease being studied,
then it is reasonable to expect that the ion intensity values for this m/z in different pixel locations
in a diseased area are approximately the same. Therefore, the standard deviation of the intensities at
the m/z value should be small. Conversely, if the m/z value selected by the statistical model is based
on a differentiation mainly caused by the tissue structure, then the ion intensities at the m/z value
would vary significantly from pixel to pixel in various tissue regions and, consequently, the standard
deviation of intensities at that m/z value would be relatively large. Thus, it is appropriate to associate
standard deviations at all selected predictors to the optimal model selection in order to impose the
penalty functional on predictors caused by structure differences. In our work we incorporate such a
spatial penalty into the EN model to develop the EN4IMS algorithm for IMS data analysis.

2.3.2. EN4IMS model. In the EN model, there are two tuning parameters �1, �2. It is shown in [18]
that the parameter �1 is associated with the number of steps (k) in the LARS-EN algorithm and k
can be used as the second tuning parameter besides �2. Therefore, two tuning parameters in the EN
model can be considered as k and �2. There are well-established methods for choosing such tuning
parameters [20]. In the two-dimensional cross-validation (CV) suggested in [18], �2 is typically chosen
as a relatively small grid, say (0, 0.01, 0.1, 1, 10, 100). For a fixed �2, algorithm LARS-EN produces
all possible EN estimates �̂. The other tuning parameter k is selected by 10-fold CV. Some rules can
be applied to select an optimal solution �̂. The optimal step corresponding to the optimal solution can
be chosen so that it minimizes the prediction error, that is the RSS in the CV step of the LARS-EN
algorithm.

Based on the biological considerations discussed in Section 2.3.1, we incorporate the spatial standard
deviation for the spatial penalty consideration into the EN model CV step. The 10-fold CV method
divides the IMS data set into ten equally sized batches and estimates parameters ten different times
by leaving one batch out each time. The testing error for each omitted batch is computed using the
estimates derived from the remaining batches. The RSS and the average of spatial standard deviations
of selected ion intensities are measured at every step. Finally, the optimal model is chosen as the one
that can minimize the convex combination of the RSS and the average of spatial standard deviations
of selected ion intensities.

We now present a detailed description for the EN4IMS algorithm. The pseudo code is given in
Appendix A.
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First, we apply the EN algorithm to find the entire solution path as described in [18]. Then, we select
the optimal step kopt in the 10-fold CV by minimizing

(1−�)‖y− ŷSk‖22+
�

M

M∑
j=1

√∑N
i=1(xij−� j )2

N−1
, 0<�<1, (3)

where N is the number of all cancer pixels, M is the cardinality of the active set Sk determined by the
EN4IMS model in the step k (see Appendix A). xij is the intensity for a fixed j th m/z value in the
pixel i and � j is the mean intensity over all these cancer pixels for a fixed j th m/z value. Comparing
the error of each optimal model for each fixed �2, we choose the value of �2 that minimizes the error.
This incorporates a penalty into the modified CV step.

The tuning parameter � in (3) weighs the spatial penalty for balancing the contribution of the RSS
against the spatial penalty term for the IMS data. For those peaks, or m/z values, with smaller standard
deviations, the penalty effect on them will be smaller. In order to incorporate the LARS-EN algorithm
into the EN4IMS package, we first fix � and then use two-dimensional CV to select the parameters
k, �2. We select � based on experimental experience in the IMS data analysis. The effects of various
choices of � on the number of selected predictors and the number of selected structure-related predictors
are discussed at the end of Section 3.1.

The EN4IMS model proposed here is for pixel-level classification and potential biomarker discovery.
When entering the data, spectrum pixels from a cancer area and a noncancer area are purposely selected
from the mouse brain IMS data sets to be as symmetric as possible relative to biological structural
similarity. A master peak list of m/z values for all these pixels is generated. Although the number
of m/z values is significantly larger than the sample size, the EN model is able to use them without
dimension reduction. The early stop feature of the LARS-EN algorithm saves computation cost and
time [18]. In the case where p�n, if the algorithm ends in q steps, then it only requires O(q3+ pq2)
operations. We include all m/z values as predictors in (1), and yi =−1 for the i th pixel in a noncancer
area, else yi =1.

The pseudo code of EN4IMS has been implemented by using MATLAB. Applications for a non-
MATLAB environment are also provided in the software package. The package includes functions
to visualize intensity distributions of IMS data both in two and three dimensions, functions of the
EN model for real MS data analysis, the EN4IMS model for real IMS data analysis, other current
popular algorithms used in IMS data analysis such as PCA, LDA, and SVM, as well as provides the
functionality to create the ion images of certain given m/z values. By incorporating the spatial penalty
term, this package is able to distinguish true biomarkers from features selected through structural
difference, which is a crucial need in current IMS data processing. It also considers the grouping effect
of these m/z values, where strongly correlated predictors tend to be in or out of the model together.
Furthermore, the optimal model provides us with selected variables (a listing of m/z values) serving as
potential biomarkers and can perform classification for unknown IMS data sets. The application results
of biomarker selection and classification are shown in Section 3.3.

In the EN4IMS algorithm, the spatial penalty consideration is applied in the CV step. A more
general model that incorporates a spatial penalty term directly into the EN model Equation (2) has
been discussed in [25].

2.3.3. Comparison of the EN4IMS model with other algorithms. Data analysis generally has two
components: preprocessing of data, followed by statistical analysis. Various algorithms are used for all
of the spectra preprocessing steps including baseline subtraction, peak alignment, normalization, and
peak picking [26, 27]. The use of MVA methods has opened new doors for the analysis of IMS data,
such as PCA [11, 13--15], LDA [10, 12], and SVM [17]. To compare these methods, guidelines are
needed for data preprocessing before they can be applied [28]. The requirements of data preprocessing
for different software packages on IMS data processing are quite different. In comparison, the EN4IMS
package can take data that have been minimally preprocessed even without peak binning/alignment
beforehand.

In general, it is challenging to perform classification and biomarker selection accurately with IMS
techniques since the m/z dimension is extremely high, and far greater than the sample size. PCA
is a general tool for dimension reduction in classifier construction. By reordering all discrete spatial
positions in the x- and y-directions, that is, ‘pixels’, into one long vector holding I · J elements for PCA
on IMS data [11, 12, 15], a matrix D of size (I · J )×K is formed, holding all the original information.
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Because of the issue of global correlation, the use of PCA for the wholem/z range is typically preferred.
Although it might seem to be computationally expensive, by transposing a matrix of dimension, say
a×b with a�b, it is possible to reduce the computation cost from O(b3) to O(a3). However, there
are still several drawbacks to using PCA for IMS data analysis.

PCA is a commonly used dimension reduction technique, which constructs new input variables using
linear combinations of all original input variables. Since all input variables are used in construction of
the super variables and hence classification, the biomedical implications of the classifiers are usually
not obvious [29]. Furthermore, although PCA can be helpful in finding m/z values that represent the
most significant variance, the variance may be caused by structural difference instead of cancer. PCA
typically highlights the variations due to anatomical features first, and the features of interest are hidden
in the later principal components described by just a small amount of variance [16].

K -means is combined with PCA for IMS data analysis in [10]. The inputs of cluster methods are the
principal components selected by PCA, since the m/z dimension is too high. Based on our experience,
these inaccuracies in PCA do, in fact, introduce inaccuracies in cluster results. This unsupervised
classification could be further improved by using a supervised technique such as LDA or SVM.

LDA aims to maximize the ratio of between-class variance to within-class variance. LDA was
combined with PCA for IMS data analysis [10, 12]. To use LDA, the number of pixels in the groups
being analyzed should be larger than the number of data points in spectra, which is usually not the case
with IMS data. Because of that [10, 12] propose using PCA as a technique for dimension reduction
first. In addition, LDA implicitly assumes that the mean is the discriminating factor (not variance) and
that the data are normally distributed. Such assumptions limit the application of LDA.

Linear SVM combined with PCA was also used for IMS data analysis in [17]. To use linear SVM,
one usually uses PCA for dimension reduction. Thus, SVM suffers from the same problems as these in
PCA noted above. Furthermore, SVM is designed for classification, not feature selection. SVM itself
cannot select features automatically and uses either univariate ranking or recursive feature elimination
to reduce the number of features in the final model [18]. Consequently, this method is not effective for
biomarker selection.

By incorporating the spatial penalty term, our proposed EN4IMS model can effectively select cancer-
related features instead of structure-related features. It encourages a grouping effect as well. Cancer
may affect some functional proteins, and thus peptides related to these proteins should be in or out of
the model together. In summary, the EN4IMS model for IMS data processing shows many advantages
and can outperform the algorithms that it has been compared against. In Section 3, simulation data and
real IMS data sets are used to further evaluate the EN4IMS model.

3. Results

In this section, extensive simulation studies are conducted to evaluate the performance of the proposed
EN4IMS algorithm. Further, the EN4IMS algorithm has been applied to two real IMS data sets of
mouse brain cancer generated by the Vanderbilt Mass Spectrometry Research Center. The analysis
includes a comparison of results of the EN4IMS algorithm, EN, PCA, LDA, and SVM, as well as the
results obtained by using the commercial software SAM. The results show that the EN4IMS algorithm,
compared with the EN algorithm, produces a more concise listing of peaks in the sense of including all
significant features, but a smaller number of shoulder/noise peaks. The EN4IMS algorithm confirms
new biomarkers, and also provides better classification results comparing with other currently popular
analysis methods in the IMS community.

3.1. Simulation

For simulation purposes, we first generate an IMS data set based on cancer mean spectrum and noncancer
mean spectrum from a real data set consisting of 104 cancer spectra (pixels) and 105 noncancer spectra
(pixels). From these mean spectra of this real IMS data set, 502 peak features were selected. The m/z
values with intensity difference between cancer and noncancer mean spectra larger than 350 are defined
as DE-features, that is, the features are differentially expressed between these two groups. In this data
set, the number of DE-features is 46. We divide these DE-feature peaks randomly into predefined ‘true
biomarkers’ and predefined structure-related feature peaks.

The simulation was conducted based on two cases of the number � of predefined ‘true biomarkers’
and two scenarios of the intensities’ standard deviation �2 from these predefined structure-related peaks.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010
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For the first case, 16 ‘true biomarkers’ are randomly selected from 46 DE-feature peaks (�=16). The
remaining 30 peaks are defined as structure-related peaks. For the second case, 18 ‘true biomarkers’
are randomly selected from 46 DE-feature peaks (�=18). The remaining 28 peaks are then defined as
structure-related peaks. The set of biomarkers in the first case only shares two peaks with the set of
biomarkers in the second case. This setting of the simulation helps to reduce biases.

We assume that intensities of true biomarkers have smaller variation in cancer areas, whereas
intensities of structure-related feature peaks have larger variation in cancer areas. Given that, and based
on experimental observations of the data sets, we took the standard deviation �1 for these predefined
true biomarkers in the cancer group as 1

2 (0.5%× corresponding mean intensity)+ 1
2c1 for c1=10; the

standard deviation �2 for these predefined structure-related feature peaks in the cancer group is selected
in two scenarios: 1

2 (4%× corresponding mean intensity)+ 1
2c2 for c2=40 and c2=50, respectively;

the standard deviations �3 and �4 both as 1
2 (1.5%× corresponding mean intensity)+ 1

2c3 with c3=20
for other 456 peak features in the cancer group and for these 502 peak features in the noncancer
group, respectively. In summary, we have the following four corresponding settings for simulation:
(�,c2)= (16,50), (16,40), (18,50), (18,40).

Cancer and noncancer intensity data are generated from a normal distribution with predefined standard
deviation �1, �2, �3, �4 for those 502 peak features and corresponding means based on the cancer and
noncancer mean spectra. The sample sizes for both cancer and noncancer data are chosen to be 50.
The EN and EN4IMS are implemented using the same parameters: STOP=−40 (see Appendix A) and
�2=0.1. The parameter for spatial penalty � in the EN4IMS algorithm is set to be 1

4 when c2=50 and
1
3 when c2=40. The discussion of the selection of � can be found at the end of this section.
Based on these settings, the simulations were run 50 times for each of the three algorithms (EN4IMS,

EN, PCA) in each of the four settings. Simulation results are shown in Figures 2 and 3, respectively.
Figure 2 shows the number of selected predictors using EN4IMS, EN, and PCA methods in four

different settings. Since the STOP=−40 for EN4IMS and EN, the threshold for PCA is chosen to
make PCA algorithm selecting predictors to be around 40. Both EN4IMS and EN select all the ‘true
biomarkers’ but PCA misses at least one-third of the ‘true biomarkers’. In settings of both (�,c2)=
(16,50) and (16, 40), PCA selects around half of the ‘true biomarkers’ and it selects around two-third of
the ‘true biomarkers’ in settings of (�,c2)= (18,50) and (18, 40). Furthermore, the EN4IMS generally
selects predictors less than the other two methods. If the number of selected predictors by PCA is
further reduced by using a larger threshold, this will cause PCA to miss even more ‘true biomarkers’.
However, PCA has a smaller variation in the number of selected predictors.

Figure 3 shows the number of selected structure-related predictors of EN4IM, EN, and PCA methods
in four different settings. With the same predefined ‘true biomarkers’ (�=16), both EN and EN4IMS
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Figure 2. Box-plot of the number of selected predictors [numbers 1, 2, and 3 stand for three
algorithms EN4IMS, EN and PCA; letters A, B, C, and D stand for four settings (�,c2)= (16,50),

(16, 40), (18, 50), and (18, 40)].
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Figure 3. Box-plot of the number of selected structure-related predictors [numbers 1, 2, and 3 stand for,
respectively, three algorithms EN4IMS, EN, and PCA; letters A, B, C, and D stand for, respectively, four

settings (�,c2)= (16,50), (16, 40), (18, 50), and (18, 40)].

select more structure-related predictors in the setting of c2=40 than in the setting of c2=50. Similarly,
with �=18, both EN and EN4IMS select more structure-related predictors in the setting of c2=40
than in the setting of c2=50. However, the EN4IMS generally keeps selecting a more concise list of
predictors compared with EN and PCA in all four settings. In addition, there are almost no differences
for the number of selected structure-related predictors by PCA when c2 is changed from 40 to 50 for a
given � value. Similarly, in Figure 2, the number of selected predictors by PCA varies little when c2 is
changed from 40 to 50 for a given � value. PCA is not sensitive to a variation of intensities in a subset
of the data, though PCA operation can be thought of as revealing the internal structure of the data in
a way which best explains variance in the data.

The parameter � controls a weight on the spatial penalty term by balancing the contribution of the
RSS and spatial penalty term. In the CV step, the optimal step is chosen so as to minimize the convex
combination of the RSS and the average of spatial standard deviations of selected ion intensities.
Therefore, the larger value of � gives more weight to the spatial penalty.

Extensive simulation studies on various choices of � were also conducted. Simulation settings were
�=18 with c2=40. The EN4IMS algorithm was run 50 times for each of the four � values. The
box-plots in Figure 4 illustrate the effect of various choices of � on the number of selected predictors
and on the number of selected structure-related predictors. We can see that the number of selected
predictors and the number of selected structure-related predictors decrease as � increases.

In real IMS data analysis, we can calculate standard deviations for each m/z value from the sample
data. Then based on the obtained standard deviations and the level of penalty on the spatial variations,
the value � can be chosen subjectively. In simulation results illustrated in Figures 2 and 3, we have
chosen � to be 1

4 when c2=50 and 1
3 when c2=40 in the EN4IMS algorithm. Also, we use �= 1

4 in
the real data analysis in Section 3.3.

3.2. Experiments

The EN4IMS algorithm has been applied to two real IMS data sets. Both data set-1 and set-2 are on
a GL26 glioma study. Figure 5 shows the stained mouse brain sections corresponding to data set-1
(left) and set-2 (right), respectively. The darker areas in this figure indicate the presence of the tumor
as confirmed by a trained pathologist. Data set-1 has relatively higher resolution (more pixels/spectra)
than data set-2.

In corresponding experiments, C57 black mice were implanted with a GL26 glioma cell line, and
tumor growth was allowed to occur for 15 days. The mouse brains were excised, flash-frozen, sectioned
on a cryostat (12�m), and thaw-mounted onto gold-coated MALDI targets. The brain tissue was then
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Figure 4. Relationship of the number of selected predictors and the number of selected struc-
ture-related predictors with �.

Figure 5. Slide pictures of mouse brains with tumor. The left one is from the data set-1 and the
right one is from the data set-2. The shape of the cancer area and noncancer area can be used

to compare with the ion images of selected biomarkers.

spotted with sinapinic acid for protein images using an acoustic reagent multispotter (Labcyte). Protein
images were acquired for each of the brain sections using a MALDI-TOF-IMS (Bruker) at a resolution
of 300�m by 300�m. After data acquisition, the data underwent a series of basic preprocessing steps
to reduce the experimental variance between spectra by removing background noise, normalizing the
peak intensity to the total ion current, and binning peaks if needed.

Various algorithms were employed for all of the spectra processing steps as a part of the PROTS Data
program from BioDesex before applying significance analysis of microarrays (SAM) [30] to generate
the SAM feature list in Appendix B. In comparison, the EN4IMS package can take data that have
been minimally preprocessed even without peak binning/alignment beforehand. This saves a significant
amount of time spent on data processing.

3.3. Results and biological interpretation

Listings of selected peaks obtained by processing the IMS data set-2 using the EN4IMS, SAM, EN, and
PCA algorithms are included in Appendix B. For the IMS data set-2, the EN4IMS algorithm generates
a list of m/z values that matches significant features obtained by using the SAM and provides a much
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more condensed list by removing noise/shoulder peaks. In addition, the EN4IMS identifies the tumor
signal peak (m/z=14788), which is not on the SAM list. Therefore, the EN4IMS algorithm helps
in confirming peaks found by other algorithms and finds interesting regions in the spectrum missed
by other algorithms that are potential new biomarkers. The biological interpretation of the biomarker
(m/z=14788) is discussed later in the paper.

Compared with the m/z list generated by the EN algorithm, the newly developed EN4IMS algorithm
that incorporates the spatial penalty term produces an even more concise list by including all significant
features and has a smaller number of noise/shoulder peaks. These noise/shoulder peaks are most likely
fake ones caused mainly by noise.

The EN4IMS algorithm found more important biomarkers than the PCA method [11, 12, 15]. The
peaks (m/z=6700,8380,10952,14788) described below are on the EN4IMS list but not on the PCA
list (Appendix B). Notice also that a so-called binning algorithm needs to be run usually on MS peaks
in order to obtain cross samples alignment in MS data processing [31]. Peaks within a five-dalton shift
of a central m/z value (�5000) are usually considered to be the same peaks. Therefore, these four
biomarkers correspond to the m/z values of 6702, 8384, 10949, and 14786 in the EN4IMS list.

The feature peaks (m/z=6700, 8380, 10 952, 14 788) have been proved to be important biomarkers
in cancer research [32--36]. Furthermore, a series of experiments were performed to correctly identify
the proteins of our selected features of interest. First, tissues were homogenized in Tissue Protein
Extraction Reagent (TPER; Pierce, Rockford, IL) and supplemented with protease inhibitors. For each
extract, a Vydac C8 polymeric reversed-phase column (3.2×150mm) fractionated 300 g of protein
solution (96min linear gradient from 2 to 90 plate). During separation, a liquid handling robot moves the
transfer capillary sequentially into each of the 96 wells at 1min intervals. To identify wells containing
proteins of interest in an automated process, 0.2 L was removed from each well, mixed with SA matrix,
and analyzed by MALDI MS (Bruker Autoflex). Fractions containing m/z values of interest were run
on a gel (10–20tricine) and bands of interest were excised and digested with trypsin gold (Promega;
Madison, WI). In the solution trypsin digest was also performed on fractions that contained m/z values
of interest. Either an LTQ or an LCQ (Thermo Scientific; Waltham, MA) was used to analyze digested
proteins. The peptides were separated on a packed capillary column, 75m×10.5cm, with C18 resin
(Monitor C18, 5m; Column Engineering, Ontario, CA), using a linear gradient (5MS/MS spectra were
initially analyzed by searching the mouse International Protein Index database using Sequest software).
ProteinProphet software was then used to determine the probability that a protein had been correctly
identified based on the available peptide sequence evidence.

Figure 6 shows ion images of six m/z values, including four cancer biomarkers (m/z=
6700,8380,10952,14788) mentioned above together with two non-DE feature peaks (m/z=
7500,4000) for comparison. Non-DE features are defined as the m/z values where intensity is not
differentially expressed between cancer and noncancer groups. For the four images in the right two
columns, the intensity differences between cancer and noncancer areas are very clear. For the two
ion images of biomarkers with m/z values of 6700 and 8380, respectively, intensities are much lower
in one area than intensities outside that area. In the other two ion images of biomarkers with m/z
values of 10 952 and 14 788, respectively, intensities are much higher in one area than intensities
outside that area. Compared to the mouse brain tissue section in Figure 5 (right), these four ion
images show the shape of the tumor area very well. By contrast, the images in the left column of the
non-DE features (m/z=7500,4000) do not depict differences between cancer and noncancer regions
at all.

Protein identification experiments provided identities of important biomarker peaks, including
cytochrome c oxidase copper chaperone (m/z=6700) and cytochrome C oxidase subunit 6c
(m/z=8380), which are involved in the electron transport chain. The electron transport chain removes
electrons from the donor, NADH, and passes them to a terminal electron acceptor, O2, via a series of
redox reactions. Several recent studies have linked impaired mitochondrial function as well as impaired
respiration to the growth, division, and expansion of tumor cells; this is known as the Warburg effect
[32, 33]. The Warburg effect is described as the dependency of tumors on glycolysis rather than on
oxidative phosphorylation for ATP even in the presence of oxygen. This explains why the cytochrome
c oxidase copper chaperone and the cytochrome c oxidase subunit 6c have decreased signal intensities
in the tumor areas of the brain.

Additional experiments identified signals including calgizzarin (m/z=10952) and an acetylated form
of Histone H2A (m/z=14788). These signal intensities were found to be increased in the tumor areas of
the brain. Calgizzarin, a calcium binding protein, has been implemented in the processes of proliferation,
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Figure 6. Ion images of six m/z values including four important biomarkers (right two columns)
and two non-DE features (the left column). The shape of cancer area can be compared with

Figure 5 (right) based on data set-2.

differentiation, and accelerated metabolism in cancer cells, although its detailed function is not yet
known [34, 37, 38]. Histones tail modifications, such as acetylation, methylation, phosphorylation, and
ubiquitination, along with DNA methylation, are the most studied epigenetic events related to cancer
progression [35, 36]. Histone modifications promote or prevent the binding of proteins and protein
complexes that drive particular regions of the genome into active transcription or repression.

By examining the details of the intensity increasing or decreasing trends, we found that most m/z
values in the EN4IMS list have a decreasing trend in the tumor area. By plotting the difference of mean
spectrum of normal data and mean spectrum of tumor data, we can see the whole data set is negatively
associated overall. Since the EN4IMS algorithm is based on a linear regression model, if the data set
is negatively associated overall, then it is likely to only pick up negative differentiations.

Interestingly, when p�n, linear classifiers often perform better than non-linear ones in many
applications [20], even though non-linear methods are known to be more flexible. This fact is related
to the asymptotic results [39]: when p�n, under mild assumptions for data distribution, the pairwise
distances between any two points are approximately identical to each other so that the data points form
an n-simplex. Linear classifiers then become natural choices to discriminate between two simplices [40].

Both IMS technology and IMS data processing are new fields, therefore it is interesting to incorporate
new methods into IMS data analysis. In Table I, we compare classification results of the EN4IMS
algorithm with those of other current popular methods used in the IMS community. Here, PCA+LDA,
PCA+SVM algorithms are implemented according to [10] and [17]. In data set-2, there are two mouse
brain tissue sections. One is used for model training and the other section is used for model testing. 110
pixels are selected from the cancer area to be used as the training cancer data set, and 110 pixels are
selected from the normal area to be used as the training noncancer data set. Similarly, 110 cancer pixels
and 110 noncancer pixels are selected from the second mouse brain tissue section as test data. Results
are shown in the first three rows of Table I. In addition, we use data set-1 from a different mouse brain
for testing. In this test, 99 cancer pixels and 96 noncancer pixels are selected. Results are shown in the
last three rows of Table I. In both cases, the EN4IMS algorithm shows the best classification results.

4. Conclusion

The major result of this paper shows that incorporating a modern statistical regularization and variable
selection method, called the EN model, into the IMS data processing procedure by adding a spatial
penalty term results in a better utilization of advantages of the IMS technology. An algorithm package,
called EN4IMS, has been developed, which allows us to process IMS data that have been minimally
preprocessed even without peak binning beforehand, obtain an accurate classification rate, and increase
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Table I. Classification results comparison of the EN4IMS algorithm with other methods.

Methods Accuracy (per cent) Sensitivity (per cent) Specificity (per cent)

PCA+LDA 78.64 100 57.27
PCA+SVM 71.82 84.56 59.09
EN4IMS 99.09 100 98.18
PCA+LDA 82.05 98.99 64.58
PCA+SVM 70.77 100 40.63
EN4IMS 100 100 100

reproducibility. The EN4IMS algorithm provides a framework that can deal with MALDI-TOF IMS
data and helps in confirming new potential biomarkers. In summary, detection and quantification of IMS
biomedical data features is a key step to biomarker discovery. The EN theory and the EN4IMS algorithm
development ensure that the analysis results possess the desired qualities of precision, efficiency, robust-
ness, and reproducibility. MATLAB scripts used to implement the methods described in this paper, along
with supplementary data sets, can be found at http://www.mtsu.edu/∼dhong/EN4IMS.htm.

Appendix A

In the following pseudo code, X is the input variable matrix and y is the response variable vector. The
value of y j is positive one when the pixel is in cancer region or negative one when the pixel is in
noncancer area. �1,�2 are the regularization parameters. The EN4IMS algorithm inherits the early stop
feature of LARS-EN [18] by including the input value STOP which has the following functions:

(1) If STOP is negative, its absolute value is the desired number of predict variables selected for the
model.

(2) If STOP is positive, it corresponds to an upper bound on the �1 norm of the beta coefficients.
(3) If STOP is zero, the pseudo code as below allows the generation of the entire solution path.

Algorithm (EN4IMS)
1. Input predictor matrix X of covariate vectors x j , the response vector y. Set estimate coefficient �̂=0,
step k=0.
2. Define correlations Ĉk =XT(y− ŷSk ), where estimate ŷSk =XSk �̂Sk ,XSk = (. . .s jx j . . .),s j =
sgn{ĉjk} for j ∈ Sk. Active set Sk is the set of indices corresponding to covariates with the greatest
absolute correlation, Sk ={ j : |ĉjk|=CM}. The greatest absolute correlation CM =max j {|ĉjk|}.

While (Sck �=�) Do
(a) GSk =XT

Sk
XSk , ASk = (1TSkG

−1
Sk
1Sk )

−1/2

(b) Calculate equiangular vector
u1=XSkXSk d2
u2=d1d2XSk

where XSk = ASkG
−1
Sk
1Sk , d1=√

�2,d2= 1√
1+�2

.
(c) Calculate the inner product vector which represents the correlation between each variable and

equiangular vector
a= (XTu1+u2d1)d2
(d) Update current algorithm estimate
ŷSk+1 = ŷSk + �̂u1
where �̂=min+

j∈Sck

{
CM−ĉjk
ASk−a j

,
CM+ĉjk
ASk+a j

}
(e) Update the active set Sk
if �̃<�̂, Sk+1= Sk−{ j̃}
else Sk+1= Sk+{ j̃}
where �̃=min� j>0{� j },� j =−�̂ j/(s jXSk j ) for j ∈ Sk
(f) k=k+1
End Do

3. Find step kopt to select the optimal model by using 10-fold cross-validation to minimize the following

functional (1−�)×‖y− ŷSk‖22+ �
M

∑M
j=1

√∑N
i=1(xij−� j )2/N−1 for j ∈ Sk

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010



F. (Zoe) ZHANG AND D. HONG

Appendix B

Listings of selected peaks in terms of m/z values using the EN4IMS, SAM, EN, and PCA algorithms.

EN4IMS list SAM list EN list PCA list

4664 2791 3434 8337 4476 13 562 4934 8567
4667 3010 3764 8366 4664 14 327 4936 10 257
4670 3056 4011 8380 4670 14 336 4937 10 259
4812 3734 4076 8395 4812 14 343 4938 10 261
5446 3800 4271 8492 4884 14 781 4939 10 263
5753 3920 4538 8672 5425 14 786 4960 14 969
5754 4206 4566 8945 5429 14 805 4962 14 971
5756 4341 4665 8982 5446 4963 14 974
5757 4605 4676 9327 5753 4964 14 976
6165 4734 4899 9343 5754 4966 14 979
6702 4767 5106 9531 5756 5439 14 981
6706 4921 5120 9602 6165 5441 14 983
7799 4936 5428 9619 6702 5442 14 986
8019 4964 5444 10 238 6706 5444 15 603
8024 4981 5707 10 267 6794 5445 15 606
8384 5001 5753 10 466 7799 5446 15 608
8386 5024 6166 10 662 8019 5448 15 611
9344 5170 6186 12 434 8024 5449 15 613
10 172 6225 6251 13 560 8028 5451 15 616
10 261 7706 6310 14 525 8384 6571 15 618
10 263 8420 6574 8386 6572 15 620
10 265 8603 6700 8495 6574 15 623
10 267 8709 6719 8524 6575 15 625
10 282 8747 6780 9344 6577 16 780
10 366 9062 7099 9553 7749 16 782
10 374 9736 7118 10 172 7751 16 785
10 825 9956 7297 10 261 7752 16 787
10 949 10 167 7315 10 263 7792
13 562 10 952 7338 10 267 7794
14 336 11 388 7357 10 282 7795
14 343 11 640 7751 10 366 7797
14 781 12 203 7776 10 374 8560
14 786 14 865 7795 10 811 8562
14 805 14 927 8025 10 825 8564

14 978 8107 10 949 8566
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