
TUTORIAL

Sobol Sensitivity Analysis: A Tool to Guide the
Development and Evaluation of Systems Pharmacology
Models
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A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts
into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based
upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater
the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an
innovative tool that can meet this challenge.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015

The need of qualitatively and quantitatively understanding the
dynamics of complex biological systems has given rise to sys-
tems pharmacology models. The mechanistic nature of these
models allows for a detailed description of the underlying net-
work of biological processes and how they respond to thera-
peutic interventions. At the same time, the relative complexity
of these models results in a number of challenges, one of
which is the ability to identify and estimate respective model
parameters. Models that are less complex but are still able to
characterize the dynamic properties of underlying biological
systems have consequently been gaining popularity. In order
to develop these models, a number of approaches can be
used, one of which is sensitivity analysis. Sensitivity analysis
is routinely employed to evaluate how changes in model input
affect its output and, thus, to determine to what extent
changes in a model input parameter or a set of model input
parameters will affect the model output.

In this tutorial, we will first introduce the concept of sensi-
tivity analysis before discussing the two general subtypes
of sensitivity analysis, i.e., local and global. Following this
general introduction, we will briefly discuss the advantages
and limitations of the different approaches used for global
sensitivity analysis. Finally, we will discuss Sobol’s method,
the associated analysis steps as well as its advantages and
limitations. We will follow with three specific examples in an
increasing order of complexity.

SYSTEMS PHARMACOLOGY MODELS

Quantitative and systems pharmacology has been regarded
as an important tool and computational approach to discover
novel drugs and elucidate the mechanism of drug actions.1 It
has been well accepted that biological systems consist of
highly interlinked networks, and the dynamic interplay
between the individual components needs to be better under-
stood in order to make inferences about the overall system’s
behavior.2 Without a thorough understanding of the intricacies

of biological systems, it is difficult to understand and predict

the mechanisms of drug action at the molecular level. Mathe-

matical modeling and simulation tools can help to overcome

this challenge as they can be used to integrate information

from different in vitro, animal, and clinical studies into a sin-

gle, unifying model.3 Respective models can be established

at different levels of spatial and temporal complexity ranging

from data-driven and descriptive to completely mechanistic

approaches as in systems pharmacology modeling.4

Models characterizing biological systems and drug actions
can be established at different levels of spatial and temporal
complexity using either a top-down or a bottom-up approach.
Top-down approaches usually start at a high level of organi-
zation and become increasingly more complex to better
characterize the underlying biological system. Bottom-up
approaches, on the other hand, start with the “bottom” ele-
ments of the organism (e.g., genes or proteins and their
known interactions), and work their way up to the patient-
phenotype level.5,6 Both approaches have advantages and
limitations, which have given rise to hybrid approaches such
as pharmacokinetic/enhanced-pharmacodynamic (PK/ePD)
models, that represent a synergy between the two
approaches. This hybrid approach merges system biology
(i.e., bottom-up) with the traditional PK (i.e., top-down) mod-
els. A traditional PK/PD model characterizes and predicts
drug dispositions and the effects of drugs in the living organ-
isms under physiological and pathophysiological conditions,
whereas the systems biology model describes the underlying
biochemical network.7–9 This type of PK/ePD modeling has
numerous advantages in incorporating the details of single
or multiple drug concentrations, systems biology models, the
pertinent regulatory networks and motifs of feedback/feed
forward loops, individual genomic and epigenetic characteris-
tics, which has made the individual patient therapy (precision
medicine) viable.10,11 Accordingly, a systems pharmacology
model is a complex, dynamic model that consists of both
drug-specific and biological system-specific components.
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These components are reflective of the pharmacokinetic,
biochemical network, and systems biology properties that
contribute to the function of the overall system. These types
of models have recently gained popularity in drug discovery
and research, and have been applied in different therapeutic
areas, particularly in oncology, diabetes, and pain.12–14

Systems pharmacology models are set up to character-
ize the functioning of the overall system by a detailed
description of the underlying physiological biochemical net-
works through the use of ordinary differential equations.12

Given the highly complex nature of systems pharmacology
models, the uncertainty in the model is related not only to a
few parameters, e.g., bioavailability and absorption rate, as
in a traditional PK model, but comes from two sources: (i)
the structural model itself and (ii) its parameters.15 This is
at least in part the result of regulatory feedback and feed
forward mechanisms that are included in systems pharma-
cology models, which allows cells to maintain homeostasis
while responding to changes in the surrounding environ-
ment.16,17 The parameters in a systems pharmacology
model are often unknown, being not measurable, and hav-
ing experimental variations in different cell lines and experi-
mental conditions. The fact that a given set of data may be
characterized by different input parameter combinations
equally well does not mean that all of these parameters
combinations are equally meaningful, e.g., from a physio-
logical point of view. This poses a certain challenge, partic-
ularly for more complex models, when attempting to identify
an optimal model parameterization. This uncertainty around
which set of structural model parameters is most appropri-
ate to characterize the data is frequently referred to as
“sloppiness” in the systems pharmacology arena.18–20

Given that uncertainty around the underlying structural
model and identifiability of its parameters are the major
challenges for the successful implementation of systems
pharmacology models to problem-solving and decision-
making, sensitivity analysis has lent itself as a viable solu-
tion and a reliable methodology that allows to understanding
the relative importance of key processes and/or parameters
driving the output dynamics of the overall system. Sensitivity
analysis is also essential for guiding the further refinement
of a systems pharmacology model and its application in
drug discovery and development, e.g., for identifying drug
targets or understanding the heterogeneity of drug response
(efficacy/safety) differences.11,21–23

Sensitivity analysis
Sensitivity analysis allows the identification of the parame-
ter or set of parameters that have the greatest influence on
the model output. It consequently provides useful insight
into which model input contributes most to the variability of
the model output.24 Sensitivity analysis has been widely
used in fields, such as risk assessment, economics, and
engineering, and it has become instrumental in the systems
pharmacology arena to guide the understanding and devel-
opment of a complex model.25–27 The application of sensi-
tivity analysis can be summarized as: (i) understanding the
input–output relationship, (ii) determining to what extent
uncertainty in structural model parameters contribute to the
overall variability in the model output, (iii) identifying the

important and influential parameters that drive model out-
puts and magnitudes, and (iv) guiding future experimental
designs.24,28–30 For model builders and users, it is also a
useful tool to check the model structure and uncertainty
around the input parameters, and feedback into the model
refinement to gain additional confidence in the model.
Especially in a very complex model, the results of sensitiv-
ity analysis will help the model builders to focus on the criti-
cal parameters that determine the model output. Figure 1
illustrates the steps of sensitivity analysis in guidance of an
experimental design, parameter estimation during the
model establishment, and qualification processes.

In general, there are two types of sensitivity analysis: (i)
local and (ii) global.

Local sensitivity analysis
Local sensitivity analysis evaluates changes in the model
outputs with respect to variations in a single parameter
input.31,32 The input parameters are typically changed one
at a time in relatively small increments (e.g., 0.1% fold),33

and the effect of this individual parameter perturbation on
the model output is calculated using local sensitivity
indices.

Figure 1 The flow chart and steps of data analysis, sensitivity
analysis, the model establishment and qualification process.
Sensitivity analysis can be used to guide the experiment design
and throughout the model development process.
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For example, consider a model given by a set of ordinary
differential equations (yi is the ith model output) that is
dependent on a certain parameter set p and initial condi-
tions yi ð0Þ:

dyi

dt
5fiðyi ; p; tÞi51; 2; :::; n: (1)

The local sensitivity indices, mathematically, being the
first-order partial derivative of model outputs yi respect to
the model parameter p, can be calculated as:
@yi=@p5 lim Dp!0

yi ðp1DpÞ2yi ðpÞ
Dp . Dp is the perturbation to the

input parameter p, and it is usually a very small change of
parameter p (e.g., 0.001*p).

Local sensitivity analysis may only be used when the
model output is linearly related to the parameters near a
specific nominal value. The main limitation of a local sensi-
tivity analysis is that it evaluates parameters one at a time,
and does not allow for the evaluation of simultaneous
changes in all model parameters. In addition, the interaction
between parameters cannot be evaluated using a local sen-
sitivity analysis. In order to overcome these limitations,
global sensitivity analysis should be used.

Global sensitivity analysis
In a global sensitivity analysis, all parameters are varied
simultaneously over the entire parameter space, which
allows to simultaneously evaluate the relative contributions
of each individual parameter as well as the interactions
between parameters to the model output variance. Given
that model inputs can span a wide range (e.g., the rate
constants and initial concentrations) for systems pharma-
cology models, global sensitivity analysis is an innovative
approach for determining which reactions and processes
contribute most to the behavior of the overall system.

To date, several types of global sensitivity analyses,
such as weighted average of local sensitivity analysis,
partial rank correlation coefficient, multiparametric sensi-
tivity analysis, Fourier amplitude sensitivity analysis
(FAST) and Sobol’s method, are available for application
to systems pharmacology models.27,34–36 While an

in-depth discussion of these different techniques is
beyond the scope of this tutorial, a brief description of
these methodologies is provided below. In addition, their
important features including advantages and limitations
are summarized in Table 1.

The weighted average of local sensitivity analysis method
calculates local sensitivity indices at multiple random points
within the parameters space. The average of the local sen-
sitivity indices is then used in combination with a weighting
factor to approximate the global sensitivity.37

The relationship between input and output is usually non-
linear in complex systems pharmacology models. If the
input–output relationship is nonlinear but still monotonic in
a given model, a partial rank correlation coefficient can be
used to identify the key parameters that determine the out-
put using Pearson correlation coefficients. The values of
partial rank correlation coefficient sensitivity indices range
between 21 and 1. Zero values indicate that the model out-
put is completely insensitive to changes in respective
parameter inputs.38

Latin hypercube sampling is a sampling method used to
generate random parameter vectors. These randomly gen-
erated parameter vectors can then be used in simulations
to map out the uncertainty in the model output that results
from the uncertainty in the model parameter input during a
multiparametric sensitivity analysis.39 The vertical difference
between acceptable and unacceptable parameters cumula-
tive distribution is used to reflect the sensitivity of the multi-
parametric sensitivity analysis. The sensitivity values of a
multiparametric sensitivity analysis range between 0 and 1.
The closer the value is to 1, the more important the respec-
tive value is.39–41

Both FAST and Sobol’s methods are based on variance
decomposition techniques to provide a quantitative mea-
sure of the contributions of the input to the output variance.
The extended FAST (eFAST) is in extension of FAST tech-
nique, with the capability of calculating both total-order and
first-order sensitivity indices. The main difference between
FAST and Sobol’s method is the underlying algorithm in
multidimensional integration of the sensitivity indices. While
the pattern search uses a sinusoidal function in FAST

Table 1 Various types of commonly used global sensitivity analysis techniques comparison

Criteria for comparison

Commonly used global sensitivity analysis methods

Weighted average

of local sensitivity

analysis (WALS)

Partial rank correlation

coefficient (PRCC)

Multi-parametric

sensitivity analysis

(MPSA)

Fourier amplitude

sensitivity analysis

(FAST) Sobol

Discrete inputs Yes Yes Yes Yes Yes

Model independence No No No Yes Yes

Non-linear, input-output relationship Yes Yes Yes Yes Yes

Non-monotonic input-output relationship Yes No Yes Yes Yes

Robustness Yes Yes Yes Yes Yes

Reproducibility Yes Yes Yes Yes Yes

Ability to apportion the output variance No No No Yes Yes

Higher order interaction of parameters No No No Yes Yes

Quantitative measure for ranking Yes Yes Yes Yes Yes

Computational efficiency Yes Yes Yes No No
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method, a Monte Carlo integration method is used in Sobol
sensitivity analysis.42–45

Among all the presented global sensitivity analysis meth-
ods, variance decomposition based Sobol sensitivity analy-
sis is so far one of the most powerful techniques (Table 1).

Sobol sensitivity analysis
Sobol’s method is based on decomposition of the model
output variance into summands of variances of the input
parameters in increasing dimensionality.42,44 Sobol sensitiv-
ity analysis determines the contribution of each input
parameter and their interactions to the overall model output
variance.

Sobol sensitivity analysis is intended to determine how
much of the variability in model output is dependent upon
each of the input parameters, either upon a single parame-
ter or upon an interaction between different parameters.
The decomposition of the output variance in a Sobol sensi-
tivity analysis employs the same principal as the classical
analysis of variance in a factorial design. It should be noted
that Sobol sensitivity analysis is not intended to identify the
cause of the input variability. It just indicates what impact
and to what extent it will have on model output. As a conse-
quence, it cannot be used to determine the source(s) of
variance, such as the impact of demographic covariates on
total clearance, as in a conventional population PK/PD
analysis.

One of the important steps in any sensitivity analysis,
whether local or global, is to determine the appropriate
model output to be used for the analysis. In theory, one
could either use a certain point in time, such as Cmax for a
concentration–time curve, or a metric that integrates
changes in the model output of interest over time, such as
the duration of electrical depolarization, the integrated area
under a drug plasma concentration–time curve, or even
tumor size. The choice of the appropriate metric to be used
depends on the question at hand. In most cases, the use
of an integrated measure, such as the area under the con-
centration–time curve (AUC), provides a more robust metric
of the model output. It should be noted at this point that an
integrated metric can also change over time, for example,
as the result of aging or disease (cf. disease systems
analysis).

Sobol sensitivity analysis has several features listed as
the following:

• No assumption between model input and output
• Evaluation of the full range of each input parameter varia-

tion and interactions between parameters
• High computation intensity being the main drawback

There are important steps of Sobol sensitivity analysis,
which will be discussed in greater detail in the following
sections and are shown in Figure 2. First, a parameter
sequence is generated using Sobol sequence. Sobol
sequence, first proposed by Russian scientist I.M. Sobol, is
a quasirandomized, low-discrepancy sequence. Low-
discrepancy sequences typically sample space more uni-
formly than completely random sequences. Algorithms
which use such sequences may have superior conver-

gence.46 The generated parameter sets are subsequently
used to simulate the model outputs.47

The general features of Sobol sequence are listed as the
following:

• Sobol sequence is a low-discrepancy sequence, also
known as the “quasi-random sequence”

• More uniformly distributed than the pseudorandom
numbers

• Quasi-Monte Carlo integration produces faster conver-
gence and better accuracy

• Drawback is the high-dimensional integrals

In order to understand how the output variance be attrib-
uted to individual input variables and the interaction
between each of the input variables, the total-order, first-
order, second-order, and higher-order sensitivity indices are
calculated to accurately reflect the influence of the individ-
ual input, and the interaction between them.36

Let x5ðx1; x2; :::; xsÞ, be the input parameters. Each
parameter is considered to range over some finite interval
which may be assumed, after rescaling, to be [0, 1]. It is
useful to think of each parameter as a random variable
uniformly distributed on [0, 1], with all the parameters
mutually independent. The model output whose sensitivity
to the input parameters is to be assessed is a function of
x, say f ðxÞ. Under the probabilistic interpretation of the
parameters, f ðxÞ is a random variable with mean (f0) and
variance (D):

Figure 2 The flow chart and steps in implementation of a Sobol
sensitivity analysis. There are two main steps: pre-Sobol and
Sobol sensitivity analysis. The Sobol sensitivity analysis is
divided into four steps: generating parameter sets, running and
simulation the model output with the generated parameter sets,
calculating, and analyzing the total-, first-, and second-order and
higher-order Sobol sensitivity indices.
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f05
ð

f ðxÞdx

D5

ð
f ðxÞ2dx2f02:

All integrals are multiple integrals with limits [0, 1] on
each dimension.

The Sobol method is based on the decomposition of D
into contributions from effects of single parameters, com-
bined effects of pairs of parameters, and so on. This is
done first by decomposing f ðxÞ into

f ðxÞ5f01
Xs

i51

fiðxiÞ1
Xs

i51

Xs

i 6¼j

fijðxi ; xjÞ1:::f1:::sðx1; x2; :::; xsÞ: (2)

The terms of the decomposition are constructed as
follows36:

fiðxiÞ5
ð

fðxÞ
Y
k 6¼i

dxk 2f0

fijðxi;xjÞ5
ð

f ðxÞ
Y
k 6¼i;j

dxk 2f02fiðxiÞ2fjðxjÞ

and so on.
The analysis of variance representation of f ðxÞ is based

on the satisfaction of the condition shown in Eq. 336:

ð
fi1; :::;isðxi1; :::; xisÞdxk 50 for k5i1; . . . ; is : (3)

Because of this property, squaring both sides of Eq. 2
and integrating yields

D5
Xk

i51

Di 1
X
i<j

Dij 1
X
i<j<l

Dijl 1���1D1;2;:::;k (4)

where

Di1 ::: is 5
Ð

f 2
i1:::is
ðxi1 ; :::; xis Þdxi1 ; :::; xis is the variance of

fi1:::is ðxi1 ; :::; xis Þ, called the partial variance corresponding to

that subset of parameters.
The Sobol sensitivity indices for that subset of parame-

ters is then defined as

Si1:::is 5
Di1:::is

D
: (5)

For example, Si 5
Di

D provides the first-order contribution

from ith input parameter to the output variance and Sij 5
Dij

D

is used to compute the second-order contribution from
interaction between ith and jth parameters. Finally, total-
order sensitivity indices, which are defined as the sum of all
the sensitivity indices as STi 5Si1 Sij i 6¼j 1� � �1 S1:::i :::s , quan-

tify the overall effects of one parameter on the model
output.

Respective sensitivity indices can be obtained from Eq. 4
by dividing it by D. Given that Si relates the partial variance

to the total variance for each parameter, respective sensitiv-
ity indices should sum up to 1 as shown in Eq. 6.

15
Xk

i51

Si1
X
i<j

Sij 1
X
i<j<l

Sijl 1���1S1;2;...;k : (6)

In summary, first-order sensitivity indices as the main
effect are used to measure the fractional contribution of a
single parameter to the output variance. Second-order sen-
sitivity indices are used to measure the fractional contribu-
tion of parameter interactions to the output variance. Total-
order sensitivity indices take into account both the main,
second-order and higher-order effects, which involves the
evaluation over a full range of parameter space. The higher
the sensitivity indices value, the more influential respective
model parameters and the associated steps are. Although
no distinct cutoff value has been defined, the rather arbi-
trary value of 0.05 is frequently accepted for this type of
analysis for distinguishing important from unimportant
parameters. It should be noted though that this value of
0.05 is primarily used for more complex models and it may
be not stringent enough for relatively simple models that
contain only few input parameters.

General steps of performing a Sobol sensitivity
analysis
To date, the wide-spread application of this powerful analy-
sis technique has been limited by the availability of open
access software tools. However, the situation has improved
with the emergence of public available software, such as
the multiobjective evolutionary algorithm (MOEA) Frame-
work (http://www.moeaframework.org/). The MOEA Frame-
work is a library of multiple objective optimization
evolutionary algorithms, with Sobol sensitivity analysis
being one of the optimization libraries. During the sensitivity
analysis procedure, MOEA Framework is treated as a black
box. The optimization library is written in Java, and is thus
platform independent. As a consequence, it is able to run
on Mac, Linux, and Windows operating systems.

Prior to performing a Sobol sensitivity analysis, the right
Java running environment needs to be set up in order to
tailor to your computational operating systems. In general,
there are two major steps in Sobol sensitivity analysis using
the MOEA Framework (c.f. Figure 2): Step 1, pre-Sobol
sensitivity analysis and Step 2, Sobol sensitivity analysis.

• Pre-Sobol sensitivity analysis:

• Decide on the parameters in the model to be varied
• Define the parameter range including the lower and

upper bounds
• Save the parameter values in a .txt file (e.g.,

“ parameterul.txt” )
• Sobol sensitivity analysis:

• Download the executable MOEA Framework (http://
www.moeaframework.org/)

• Generate the parameter sets using Sobol sequence
with the following commands (in one line in the MOEA
Framework):
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java -classpath MOEAFramework-2.0-Executable.jar org.-
moeaframework.analysis.sensitivity.SampleGenerator -m
saltelli -n 5000 -p parameterul.txt> sobolParameter.txt

Note:

–m represents the mode of mathematical method of
saltelli

–n represents the number of initial samples to generate
from the pseudo-random Sobol sequence

–p represents the file specified in the pre-Sobol sensitivity
analysis step

For example, if a model consists of 5 parameters (p),
and 5,000 (n) number of initial sampling, then the total
parameter sets will be generated using the equation
2n(p11)560,000

SobolParameter.txt is the parameter set that will be used
in later steps for the model simulation.

• Using the generated parameter sets to simulate the run-
ning model output

Note this step will be carried out in your running model;

• The outputs from your running model will be used to cal-
culate the total/first/second-order sensitivity analysis in
the MOEA Framework using the following command:

java -Xmx256m -classpath MOEAFramework-2.0-
Executable.jar org.moeaframework.analysis.sensitivity.So-
bolAnalysis -m 0 -r 1000 –i objectiveValues.txt -p parame-
terlu.txt -o sobolIndices.txt

Note:

–m represents the column of the output values (0 repre-
sents the first column)

–r represents the number of bootstrap resamples
–i represents the calculated output values from the previ-

ous step
–p represents the file specified in the pre-Sobol sensitivity

analysis step
–o represents the expected Sobol indices files

• Analyze the Sobol sensitivity indices and interpret the
results:

Sobol sensitivity analysis is generally used for complex
system models and it quantitatively decomposes the out-
put variance with respect to its resources: i.e., from indi-
vidual parameters or from the interaction between
parameters. The total-order sensitivity indices are typically
used to evaluate the overall contribution of a parameter
and interaction with other parameters. The Sobol sensitiv-
ity indices have several features, which can be catego-
rized as following:

• The total-/first-/second-order sensitivity indices are posi-
tive values.

• Parameters with sensitivity indices greater than 0.05 are
considered significant.

• The sum of all the sensitivity indices should be equal to 1.
• The total-order sensitivity indices are greater than the

first-order sensitivity indices.

The sample size needed for performing a reliable Sobol

sensitivity analysis depends on two main factors: (1) the

complexity of the model and (2) the number of parameters

evaluated. Although there is no general consensus on the

optimal number of parameter sets to be generated, the

general rule of thumb is that the larger numbers of model

parameters, the higher the number of parameter sets to be

used. For example, for a complex model with a large num-

ber of uncertain parameters (e.g., 20 parameters), at least

100,000 model evaluations should be performed. For less

complex models, a smaller number of evaluations (e.g.,

1,000) may be sufficient. It should be noted though that as

the number of evaluations increases, the computational

cost increases. The appropriateness of the number of eval-

uations selected can be tested using the bootstrap confi-

dence intervals. Generally speaking, the most sensitive

parameters should have narrow confidence intervals, which

are less than 10% of the sensitivity indices.
Figure 3 shows the result of a hypothetical sensitivity

analysis example of a sensitivity analysis result from an
evaluation of 20 parameters in a systems pharmacology
model containing 20 parameters. The results indicate
that parameter k18 is the most important parameter con-
tributing to �25% of the model output variability, fol-
lowed by the important parameters k17, k16, k10, k8, k5,
and k4. Both total-order sensitivity indices and first-order
sensitivity indices have similar values, which indicate no
significant second-order interaction between the param-
eters. The error bars in the figure represent the boot-
strap confidence intervals (1.96*standard error) and
95% confidence intervals, which can be calculated by
using the formula (sensitivity indices 6 the bootstrap
confidence intervals). If the confidence interval of the
dominant parameter is greater than 10% of itself, the
sample size needs to be increased by increasing the ini-
tial sampling number in the first parameter sets genera-
tion step.

Following a brief introduction of the global sensitivity analy-
sis concept and the methodology used, we will now present
three examples of increasing complexity starting with a sim-
ple PK case study in order to highlight the utility of the Sobol
sensitivity analysis.

CASE EXAMPLES
Pharmacokinetic two-compartmental model
Our first example will use Sobol sensitivity to identify the
key parameters that drive the plasma concentrations of the
small molecule-Sunitinib, a tyrosine kinase inhibitor, which
pharmacokinetics can be characterized by a two-
compartment model with first-order absorption.48

Following a single 50-mg oral dose of Sunitinib, the plasma
concentrations were simulated over the course of 24 h. The
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parameter values used in the Sobol sensitivity analysis var-
ied between 100-fold lower and higher than the mean values
obtained from a population model, except bioavailability,
which varied between 0.5 and 1.11,48 Ideally, parameter val-
ues that are constrained within the physiological lower and
upper limits should be used in the pre-Sobol sensitivity analy-
sis steps. Given that not all parameters of a systems phar-
macology model translate one-to-one into a physiological
effect, a rather arbitrary 100-fold range is used to test the
impact of these parameters on model output.

Step 1: Parameters lower and upper bounds are saved in
“sunitinib.txt” in the dataset files (pre-Sobol sensitivity
analysis);

Step 2: Sobol sensitivity analysis procedures are listed in
the followings and the files “sobolset.txt” , “AUCPK.txt” ,
and “sobolindices.txt” can be found in the attached data-
set files.

• Set up the right Java running environment (e.g., for Win-
dows XP operating systems, Cygwin can be downloaded
from https://www.cgwin.com).

• Download the executable MOEA Framework 2.0 version
(http://www.moeaframework.org/).

• The following commands are performed in the Cgwin
interface in order to generate the parameters sets using
the Sobol sequences:

java -classpath MOEAFramework-2.0-Executable.jar org.-
moeaframework.analysis.sensitivity.SampleGenerator -m
saltelli

-n 50000 -p sunitinib.txt> sobolset.txt

• The file “sobolset.txt” is the generated parameter sets that
will be used for simulation of the model output; “sobolset.txt”
contains 2*50,000*(611)5 700,000 parameter sets.

Note: Even though no upper limit is set for parameter
sets generation, we have adopted the relative large number

of parameter sets that will produce robust sensitivity indices
with the acceptable computational efficiency.

• The generated parameter sets will be used for the model
output simulations:

This step will be carried out in Matlab in simulation of the
model output (integrated plasma concentration over 24 h
(AUC)) values saved in “AUCPK.txt” file.

• Calculation of the total-/first-/second-order sensitivity
indices:

java -Xmx256m -classpath MOEAFramework-2.0-
Executable.jar org.moeaframework.analysis.sensitivity.So-
bolAnalysis -m 0 -r 1000 -i AUCPK.txt -p sunitinib.txt -o
sobolindices.txt

• Analyze and interpret the total-/first-/second-order sensi-
tivity indices results saved in the “sobolindices.txt” as
shown in Figure 4.

The results indicate that systemic clearance (cls), central
compartment volume (vcs), and bioavailability (F) are three
important parameters, in which vcs is the most dominant
parameter with a total-order sensitivity index being 0.79
(Figure 4). For cls, if only the first-order sensitivity index is
calculated, it is not as critical as when the total-order sensi-
tivity was considered. This suggests that cls interacts
strongly with other parameters. As expected, the second-
order sensitivity indices between parameters cls and vcs
are 0.309, which indicates that the interaction between dis-
tribution and elimination (mainly in liver) is important for
determining the variability of sunitinib plasma concentration
within 24 h. The outcome of this relatively simple Sobol
sensitivity analysis example shows that both clearance and
volume of distribution are important parameters that drive
the output of the model as reflected by the first-order

Figure 3 Sobol sensitivity indices of twenty kinetic parameters are shown in this graph. Total-order sensitivity indices (black bar) and
first-order sensitivity indices (grey bar) are shown, respectively. The greater the sensitivity indices are, the more critical parameters are
for the model. Complex models usually have more than one parameters that are critical and often vary at the same time with external
conditions.
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sensitivity indices. The second-order sensitivity indices indi-
cate that there is also a significant interaction between the
two, which has to be considered in order to appropriately
interpret the analysis output. While this insight has limited
instructive value for the user of the Sobol sensitivity analy-
sis for this simple case example, respective first- and
second-order Sobol sensitivity indices values can provide
very valuable insights into the underlying dynamics of
highly complex systems as discussed in the following
examples.

The pharmacokinetics of Naratriptan, a small molecule 5-
HT1 agonist, can be characterized by a two-compartment
model. Variance decomposition was performed using the
eFast method.49 The sensitivity analysis shows that bioa-
vailability is the dominant parameter that primarily governs

Naratriptan’s pharmacokinetics, followed by volume of dis-
tribution of the central compartment and systemic clear-
ance.49 Despite the fact that the pharmacokinetics of both
Sunitinib and Naratriptan can be characterized by two-com-
partment body models, the Sobol sensitivity analysis using
the MOEA framework (Sunitinib) is easier to implement and
interpret compared to the eFast method (Naratriptan) previ-
ously published in accordingly, we encourage the simplifier
yet powerful Sobol sensitivity analysis for model building
and evaluation.49

Pharmacodynamic HIV infection model
In our next example, we will use Sobol sensitivity analysis
for a published human immunodeficiency virus (HIV) infec-
tion model in order to understand the key parameters that
determine the free virus (V) model output. The results of
this sensitivity analysis can be used to guide the therapeu-
tic intervention strategy for eradicating free Virus V.

A mathematical model for HIV infection of CD41 T cells
was adopted from the literature.50 The structural model is
composed of four compartments: uninfected T cells (Eq. 6),
latently infected T cells (Eq. 8), actively infected T cells
(Eq. 9) and free Virus (Eq. 10) (Figure 5). The model con-
sists of four ordinary differential equations (Eqs. 6–10) and
nine parameters, with the initial condition for T compart-
ment (1,000 mm23), Virus HIV population V compartment
(1023 mm23), T* (0) and T** compartment (0),
respectively.27,41

dT=dt5s2lT T1rT ð12ðT1T �1T ��Þ=Tmax Þ2k1VT (7)

dT �=dt5k1VT2lT T �2k2T � (8)

dT ��=dt5k2T �2lbT �� (9)

dV=dt5NV lbT ��2k1VT2lV T : (10)

The analysis steps outlined earlier in the paper were
used to calculate the Sobol sensitivity indices. 100,000

Figure 4 Sobol sensitivity indices of six kinetic parameters from
a two-compartment Sunitinib pharmacokinetic model were shown
in this graph. Total-order sensitivity indices (black bar) and first-
order sensitivity indices (grey bar) were shown, respectively. vcs,
cls, and F were critical parameters to the model output com-
pared to other parameters. For cls, if only the first-order sensitiv-
ity indice was taken into consideration, it was not as critical as
when the total-order sensitivity indice was considered. This sug-
gested parameter cls interacted strongly with other parameters
(vcs).

Figure 5 HIV infection diagram including free Virus (V), uninfected T cells (T), latently infected T cells (T*), and actively infected T cells
(T**) four compartments. s (the rate of supply of CD41 T cells from precursors), mT (the death rate of uninfected and latently infected
CD41 T cells), r (the rate of growth for the CD41 T cell population), k1 (the rate constant for CD41 T cells becoming infected by free
virus), k2 (rate latently infected cells convert to actively infected), mb (the death rate of actively infected CD41 T cells), NV (the number
of free virus produced by lysing a CD41 T cell), mv (the death rate of free virus), and Tmax (the maximum CD41 T cell population)
were adopted from the previous publication.50
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parameter sets were tested to simulate the model output V,
using the time integrated AUC value. The data files
“HIVexample.txt” (lower and upper bound of parameters),
“HIVparameters.txt” (generated parameter sets),
“HIVresults.txt” (model output simulation files), and
“HIVSobolIndices.txt” (sensitivity analysis results) can be
found in the attached Supplementary Materials S1–S13,
which are available online. As shown in Figure 6, mv was
the most influential parameter followed by NV and k2;
parameters k1 and r are marginally significant for determin-
ing the model output. The model of time duration (4,000 d)
was also simulated, with the same conclusion reached. Our
results indicate that the second-order interaction of these
parameters as mT*mv, k2*mv, and Nv*mv also contribute to the
variance of model output V.

These results are consistent with those from the previous
publication that used eFAST technique, indicating that mv,
NV, and k2 were the key parameters that determined the
free virus V output. The author also conducted a partial
rank correlation coefficient sensitivity analysis to determine
the important parameters, and claimed that the overall
results are not consistent between partial rank correlation
coefficient and eFAST.35 Our results, on the other hand,
indicate that there is agreement between eFAST and Sobol
sensitivity analysis methods.

Enhanced PK/PD model: identification of the drug
target
In our final example, we will use our previously published
enhanced PK/PD model that links sunitinib plasma pharma-
cokinetics (PK, c.f. case example 1) with the systems biol-
ogy model (PD) of vascular endothelial growth factor
receptor (VEGFR) mediated cell proliferation, survival and
cell permeability signaling.11 Sobol sensitivity analysis was
applied in our study to identify the key targets that will
enhance anti-cancer efficacy when given in combination
with sunitinib.

The VEGF-VEGFR mediated signaling transduction and
propagation was modeled using ordinary differential equa-
tions with the cellular outputs of ERK and Akt phosphoryla-
tion and activation (pERK and pAkt). The biological

mechanism of reaction species’ synthesis and degradation,
as well as feedback inhibitions were all incorporated into
the complex model. The steady state of both pERK and
pAkt showed sustained response patterns to the ligand
VEGF stimulation; sunitinib plasma concentration drove the
VEGFR mediated network responses through competitive
inhibition of the receptor VEGFR, where both pERK and
pAkt kinetics showed transient inhibition patterns.11 In order
to understand important steps in determining the sunitinib
inhibition of both pERK and pAkt, and to identify the
“druggable” target, Sobol sensitivity analysis was per-
formed. The data files “Parameterslu.txt” (lower and
upper bound of parameters), “ParaSobolsets.txt” (gener-
ated parameter sets) (this file size is too big for attachment
and it can be provided upon request), “AktPoutput.txt”
(model output simulation files), and “AktPSobolIndices.txt”
(sensitivity analysis results) can be found in the online
supplemental material.

Similar to other target identification studies, the area
between baseline and effect curve was used as the model
output for determining the changes in pAkt over
time.11,21,51 As shown in our previous work, there were
seven important parameters and steps associated with
pAkt inhibition by sunitinib. The PI3K-catalyzed PIP2 to
PIP3 reaction (Km9, k8, k6f, and k6r) supported a PI3K inhib-
itor in enhancing sunitinib inhibition.11 As results of the
Sobol sensitivity analysis, a PI3K inhibitor can be used to
improve the efficacy in together with sunitinib usage.

In order to test the sensitivity analysis results and the
model predictive performances, both pERK and pAkt inhibi-
tion was predicted when given Sunitinib alone, a PI3K
inhibitor alone, and sunitinib & a PI3K inhibitor in combina-
tion. When sunitinib and a PI3K inhibitor was used in com-
bination, pERK was inhibited to around �40% at the nadirs,
and the duration of complete inhibition of pAkt increased; in
contrast, Sunitinib alone caused around �45% inhibition at
the respective nadirs of both pERK and pAkt; a PI3K inhibi-
tor alone caused around �65% and �100% inhibition of
both pERK and pAkt at their respective nadirs (Figure 7).11

There are also other examples of systems pharmacology
models in the literature that make use of sensitivity analysis
in order to determine which parameter or which combina-
tion of parameters is determining the model output of inter-
est. For example, for the signal transduction and activation
of transcription-3 (Stat3), two important parameter interac-
tions, i.e., the nuclear export and docking of Stat-3 to the
activated receptor, were identified using sensitivity analy-
sis.52 Although most of the sensitivity analysis focused on
the intracellular signaling pathway at a single scale, more
and more multiscale systems pharmacology models are
developed to understand the drug action at both the cellular
and multi-cellular levels. Throughout the tutorial we focused
on the influence of model parameters and their interactions
on model output. However, for future analyses it will be
also useful to consider the impact of initial model conditions
on its output given that the concentrations of reaction spe-
cies can vary across different cells and tissues within physi-
ological limits.52–57

In summary, Sobol sensitivity analysis is a useful tool for
model building and evaluation and thus for translational

Figure 6 The total-order and first-order sensitivity indices for the
output free virus V. Total-order (black bar) and first-order sensitiv-
ity indices (gray bar) were shown, respectively. mv was the most
influential parameter that determined the model output, followed
by parameters Nv, k2, k1, and r.
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drug research and development. Sobol sensitivity analysis
can be applied to PK, physiologically based pharmacoki-
netic (PBPK), and systems pharmacology models to iden-
tify the key parameters that drive the model output. In
addition, Sobol sensitivity analysis can be used in a sys-
tems pharmacology context to guide target identification,
which becomes particularly important for novel drug discov-
ery and for identifying optimal drug combinations.

We hope that the conceptual discussion of this innovative
analysis technique in combination with the case examples
will provide the reader with a useful guide for applying
Sobol sensitivity analysis to their PK, PK/PD, ePK/PD,
PBPK and system pharmacology problems.
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