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This study explores the amplitude and phase transmission of audio-frequency sound through a

waveguide side-loaded with a series of closely spaced and sequentially tuned Helmholtz

resonators. This system exhibits a series of acoustic bandgaps due to the Helmholtz resonance and

standing-wave cavity modes. The bandgaps are achieved in a physically compact manner in that

the resonators are spaced by much less than a wavelength. The response of the Helmholtz

resonator-loaded waveguide is described by a simple adaptation of an existing theory. Finally,

within the forbidden transmission regions the system exhibits narrow bands of negative group

delay. VC 2011 American Institute of Physics. [doi: 10.1063/1.3595677]

I. INTRODUCTION

In this paper we report experimental and theoretical

analyses of audio-frequency sound wave propagation in an

acoustic waveguide side-loaded with a series of closely

spaced, and sequentially detuned, Helmholtz resonators. The

objectives of the paper are twofold. First, we demonstrate

the ability to design and engineer acoustic bandgaps in a

compact (less than a wavelength) arrangement of resonators.

Second, we analyze the properties of this system as a poten-

tial acoustic metamaterial.

Acoustic bandgaps,1 and their electromagnetic counter-

parts photonic bandgaps,2,3 are typically observed in periodic

systems where the coherent effects of scattering and interfer-

ence lead to frequency bands over which transmission is for-

bidden. As the mechanism of bandgap formation is based on

a number of periodic scattering elements each spaced by

about a quarter wavelength, the physical dimension of a

bandgap material is typically much larger than the wave-

length at the fundamental bandgap frequency. The physical

size of bandgap systems can be detrimental in many vaunted

applications of these materials. A number of systems to real-

ize more compact bandgap materials have been reported. For

electromagnetic radiation, frequency-selective surfaces have

been explored as highly reflective substrates for antennas4 or

the uniplanar compact photonic bandgap structures for

microwave circuit applications.5 In the acoustic realm there

has been strong interest in fabricating artificial materials

that can manipulate the properties of the sound field. One-

dimensional gratings6 and concentric corrugated bulls-eye

structures7 exhibit enhanced acoustic transmission and colli-

mation similar to extraordinary optical transmission.8 The

key difference between the acoustic and optical realms is

that, in the optical case, surface plasmons are widely cited as

mediating the enhanced transmission. There is no corre-

sponding acoustic excitation to surface plasmons, so the

explanations for the enhanced acoustic transmission invoke

diffractive and Fabry–Pérot resonances instead. It is interest-

ing to note that the Helmholtz resonance exploited in the

experiments described here is a uniquely acoustic phenom-

enon with no optical counterpart. Another approach has been

to use plates periodically perforated with subwavelength

hole arrays.9 This system exhibits extraordinary acoustic

transmission at certain resonant frequencies in addition to

acoustic screening over a wide wavelength range. Strong

acoustic attenuation also has been achieved through the use

of mass-loaded membranes.10 The vibrational resonances of

membranes can be used to create very strong attenuation of

sound, particularly at low frequencies. Yang et al.10 showed

that low frequency sound attenuation 200 times the mass

density value could be obtained with suitably designed mem-

branes. The work described here is similar to that of Ref. 10

in that we use a tunable resonator—in our case a Helmholtz

resonator cavity instead of a mass-loaded membrane—to re-

alize acoustic attenuation in a one-dimensional waveguide.

Here we report the observation of forbidden transmission

bands in an acoustic waveguide loaded with a series of

sequentially detuned Helmholtz resonators. The resonators

are closely spaced physically along the waveguide in a dis-

tance much less than the wavelength of sound at the forbid-

den transmission band frequencies. We show that this simple

system exhibits fundamental and higher order bandgaps and

that our experimental observations are described by a simple

extension of an elegant theoretical formalism for Helmholtz-

loaded waveguides presented by Wang et al.11

The second issue explored in this work is whether the

system of detuned Helmholtz resonators demonstrates the

characteristics of an acoustic metamaterial. Recently, a

model acoustic metamaterial has been described based on

the use of subwavelength-spaced identical Helmholtz reso-

nators side-loaded on an ultrasonic waveguide.12 Fang

et al.12 showed that this system exhibits acoustic bandgaps
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and that in the bandgap region the material shows the charac-

teristics hallmark of a metamaterial; negative group delay of

tunneled pulses indicating an antiparallelism of the group

and phase velocities. Here we show that the use of detuned,

rather than identical, resonators significantly changes the

phase behavior within the bandgap such that there is not a

broad frequency range of negative-group delay across the

whole gap. Rather, there are only narrow frequency intervals

of negative group delay within the gap associated with the

individual resonances of each of the Helmholtz resonators.

This finding shows that the detuned resonators behave essen-

tially independent of each other despite their physical prox-

imity, whereas the results of Ref. 12 are a consequence of

the collective interaction of the resonators with identical

frequencies.

II. EXPERIMENTAL DETAILS

Experimentally, we first characterized the response of a

waveguide side-loaded with a single Helmholtz resonator

cavity. This configuration has been explored theoretically by

Wang et al.11 We show that our single Helmholtz resonator

results agree well with the theoretical model. Through a sim-

ple extension of the theoretical model we designed a system

of four sequentially detuned Helmholtz resonators that

exhibits broad forbidden transmission gaps. The experimen-

tal results are in good agreement with this simple extension

of the single Helmholtz resonator theoretical model in both

amplitude and phase response.

In order to measure experimentally the transmission

function of the resonator-loaded waveguide over a broad fre-

quency range, an add-and-average impulse response method

was used as outlined in Ref. 13. The setup is shown sche-

matically in Fig. 1(a). The left and right stereo outputs of a

sound card in a personal computer were used, respectively,

to generate an audio impulse and a trigger signal. The

impulse was routed to an audio amplifier connected to a

speaker. The speaker was attached to one end of the wave-

guide system under test. At the other end of the waveguide

the transmitted impulse was recorded by a microphone

(ACO Pacific 7022). Simultaneously, the trigger signal was

sent to a universal serial bus connected data-acquisition

module (IOTech PersonalDAQ 3000) that initiated analog-

to-digital conversion of the signal from the microphone. The

signal from the microphone was recorded by the computer.

The entire process of pulse transmission, reception, and re-

cording was controlled by a MATLAB program.

The impulse signal used in these experiments was the

second derivative of a Gaussian function. This pulse shape is

well replicated by speakers and provides a broad audio spec-

trum from 100 to 3000 Hz.13

The add-and-average technique was used to acquire

impulse response data with very high signal to noise. Instead

of determining the response due to a single impulse, a typical

run consisted of about 100 impulses that would be averaged

to obtain the final response signal. Each recorded impulse

signal was added to the previous and averaged in order to

cancel any random ambient noise. The MATLAB control pro-

gram generated the trigger/impulse pair at random intervals

to decrease any cyclical system noise.

To determine the response of a loaded waveguide we

first acquired a reference signal of the impulse propagated

through a long straight section (18.3 m) of waveguide with

no loading. The acoustic waveguide used in these experi-

ments was standard 3/4 in. (1.9 cm) polyvinyl chloride

(PVC) plumbing pipe. A Helmholtz resonator or array of res-

onators was then placed in the center of the 18.3 m wave-

guide. When the resonator sample was inserted into the

waveguide enough PVC pipe was removed to ensure that the

physical distance from the speaker to microphone was the

same as for the reference. The Helmholtz resonators were

made from standard PVC plumbing components: the neck

was 3/4 in. pipe, a 3/4–2 in. adapter transitioned to 2-in.-

diam. pipe for the body of the resonator, and a 2-in.-diam.

end cap. The resonator structure is shown schematically in

Fig. 1(b). A 3/4 in. T junction was used to connect the neck

of the resonator to the waveguide. The experiment was then

repeated, with the impulse being sent down the loaded wave-

guide. Both the experimental and reference signals were

time windowed to eliminate comb filtering due to reflections

at the ends of the waveguide. Both time signals were Fourier

transformed to convert the experimental data into the fre-

quency domain. The complex transmission function was

then calculated by dividing the Fourier transform of the ex-

perimental signal by that of the reference. The magnitude of

the complex transmission function represents the normalized

amplitude transmission through the resonator-loaded system

as a function of frequency. The phase angle of the complex

transmission at each frequency represents the relative phase

change introduced by the sample under test.

III. RESULTS OF LOADING BY A SINGLE RESONATOR

Experimental results for the transmitted amplitude and

phase due to loading by a single Helmholtz resonator with

dimensions of a2¼ 3.1 cm2, d2¼ 4.5 cm, a3¼ 20.4 cm2,
FIG. 1. (a) Schematic of experimental setup. (b) Details of a single Helm-

holtz resonator.
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d3¼ 20.9 cm [dimension labels defined in Fig. 1(b)] are

shown in Fig. 2(a). The amplitude transmission [lower trace

in Fig. 2(a)] shows dips at 208, 920, 1770, and 2590 Hz. The

phase response [upper trace in Fig. 2(a) referenced to the

right-hand axis] demonstrates a distinct positive phase jump

coincident with each transmission minimum.

It is easy to assign the lowest frequency transmission

dip to the Helmholtz resonance frequency given by

fHR ¼
c

2p

ffiffiffiffiffiffiffiffi
A

V0L

r
; (1)

where A is the area of the neck opening, L is the neck length,

c is the speed of sound, and V0 the enclosed volume of the

resonator. Using the above-given dimensions for the resona-

tor used to obtain the data in Fig. 2(a) the Helmholtz resona-

tor frequency is 219 Hz, in reasonable agreement with that

measured experimentally. However, to understand the data

more fully we made use of an existing theoretical formalism

described next.

The experimental arrangement used to acquire the trans-

mission and phase data shown in Fig. 2(a) corresponds pre-

cisely to the theoretical system modeled by Wang et al.11

Using an interface response formalism the authors in that

work derived the following expression for the complex trans-

mission, t, of a waveguide side-loaded with a single Helm-

holtz resonator:

t¼
cotða2d2Þ� Z2

Z3
tanða3d3Þ

cotða2d2Þ� Z2

Z3
tanða3d3Þþ i

2
Z1

Z2
1þ Z2

Z3
cotða2d2Þ tanða3d3Þ

h i
(2)

The waveguide cross-sectional area is a1, the neck area, a2,

and the cavity area, a3. The neck and cavity lengths are given

by d2 and d3, respectively. The Zi values are the correspond-

ing acoustic impedances of each tubular section given by

Zi¼ qc/ai, where q is the density of air and ai = x/c. Using

MATLAB, the expression for t was calculated as a function of

frequency using the dimensions appropriate to our Helmholtz

resonator. The theoretical amplitude and phase data are dis-

played in Fig. 2(b). There is generally excellent agreement

between the theory and experiment both in amplitude and

phase. Because the theoretical model assumes no loss the

dips in transmission are deeper and the phase jumps at the

transmission minima steeper in the theoretical model than in

the experimental data.

There are two particular features of note from the results

on the single Helmholtz resonator. First, a Helmholtz resona-

tor is a simple harmonic oscillator and should therefore ex-

hibit only a single resonant frequency. Clearly here there are

a number of resonances. It is easy to show by a simple simu-

lation using Eq. (2) that the higher order resonances corre-

spond to standing-wave modes along the length of the

cavity. If the area of the cavity, a3, is doubled while the cav-

ity length, d3, is halved, then the enclosed cavity volume

remains constant and the Helmholtz resonator frequency

should be unchanged. A simulation of this arrangement

shows that the lowest transmission minimum remains at

exactly the same frequency, whereas the second transmission

dip (at 860 Hz) disappears and only the next highest one is

present. This result occurs because the shorter cavity has a

higher standing-wave frequency by a factor of 2. The second

feature of note is the characteristic p-phase jump at each of

the transmission minima. A phase change on transmission is

an unusual feature and does not occur in wave propagation

between normal materials. However, as described by El

Boudouti et al.14 for the case of electrical transmission-line

loop filters, these phase jumps can lead to narrow bands of

strongly anomalous dispersion and negative group velocity

wave propagation. Phase jumps in acoustic loop filters were

used in the first demonstration of negative group velocity

sound wave propagation.15 It is clear that a waveguide side-

loaded with a single Helmholtz resonator also demonstrates

a similar strongly anomalous dispersion, and as is shown in

the following, negative group velocity occurs over very nar-

row frequency intervals near the transmission minima.

IV. RESULTS OF LOADING BY MULTIPLE DETUNED
RESONATORS

The next goal of our experimental investigation was

to create a system that provides a broader frequency bandgap

interval by side-loading the waveguide with a closely

spaced (<k/5) arrangement of Helmholtz resonators, each

with slightly detuned frequencies. These frequencies were

adjusted by changing the cavity length, d3. They ranged

FIG. 2. (Color online) (a) Experimental amplitude transmission (lower

trace) and phase (upper trace) as a function of frequency for a single Helm-

holtz resonator. (b) Theoretical amplitude transmission (lower trace) and

phase (upper trace) based on the theory of Wang et al. (Ref. 11).
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from d3¼ 20.9 to 19.4 cm, in four equal 0.5 cm increments.

The amplitude and phase response measured experimentally

for this system is shown in Fig. 3(a). The transmission ampli-

tude data show a wide fundamental bandgap centered at 275

Hz, with a frequency width of 400 Hz. A second, narrower

but sharper gap was achieved around �900 Hz, with a width

of 100 Hz. This corresponds quite well with the gaps pre-

dicted [Fig. 2(b)], and even the shape and behavior of these

bandgaps is quite similar to the anticipated behavior for the

given range of frequencies.

To extend the theory of Ref. 11 to describe a number of

closely spaced Helmholtz resonators, we assumed that each

Helmholtz resonator acts independently, i.e., one Helmholtz

resonator does not affect the behavior of adjacent Helmholtz

resonators. There is no a priori justification for this assump-

tion, particularly in light of the results of Ref. 12 where

closely spaced identical Helmholtz resonators apparently

demonstrate collective behavior, or given previous work on

the coupling between identical resonators.16 In the end, the

only validation of this assumption is that the experiment and

theory agree well. Wang et al.11 extended their theory to the

case of periodically spaced Helmholtz resonators, in which

case the bandgaps that open up are intrinsically associated

with the periodic structure. In contrast to the work presented

here, the spacing between Helmholtz resonators is less than

k/5 up to a frequency of about 1400 Hz.

With the assumption of independent Helmholtz resona-

tors, the total amplitude transmission, tT, through a series of i
resonators each with individual transmission ti is given sim-

ply by the product of the ti values,

tT ¼
Y

i

ti (3)

Using the d3 values for the four Helmholtz resonators used in

our experiment (19.4, 19.9, 20.4, and 20.9 cm) results in the

theoretically calculated transmission shown in Fig. 3(b). The

agreement with the experimental amplitude transmission data

presented in Fig. 3(a) is very good, even past the 1400 Hz

limit where we might anticipate that periodicity effects begin

to play a role on the transmission function. The lowest order

bandgap due to the overlapping Helmholtz resonances is

broad covering the interval from 180 to 500 Hz. This fre-

quency range corresponds to wavelengths from 0.7 to 1.9 m

from a set of resonators that occupy a total length of only 0.1

m along the waveguide. The second order gap centered at

950 Hz is also well defined. This gap is the result of overlap-

ping standing-wave resonances along the length of the cylin-

drical cavities. The phase data are also in good agreement,

except that the experimental low frequency phase data are

noisy and inconsistent with the theory. There are two reasons

why the low frequency phase data are not reliable: The

impulse that we use has very weak frequency content at low

frequency and there is a high pass filter in the data acquisition

board that affects the low frequency phase data.

V. PHASE ANALYSIS AND GROUP DELAY

Finally, the phase data can be interpreted to show that

negative group delays are present in narrow spectral regions

within the forbidden transmission bands. The group delay

time, sg, can be calculated from the frequency dependent

phase data using

sg ¼ �
@u
@x

(4)

As the phase data in the lowest bandgap are not of sufficient

quality, the group delay time is calculated for the second

bandgap centered at 950 Hz. In Fig. 4 the group delay calcu-

lated by a numerical differentiation based on Eq. (4) is plot-

ted as a function of frequency superimposed on the

amplitude transmission for the second bandgap. The series

of sharp drops in group delay correspond to the phase jumps

in the transmission data. Negative group delays are on the

order of 1 ms. The series of narrow intervals of negative

group delay are associated with the phase jump associated

with each individual Helmholtz resonator. This result con-

trasts with the result of Ref. 12 in which the identical Helm-

holtz resonators gave rise to a more smoothly varying phase

and concomitant group delay. One of the hallmarks of a

metamaterial is a group velocity antiparallel to the phase ve-

locity.12 Here, although there is a negative group delay, the

concept of group velocity is difficult to define because the

Helmholtz resonator occupies essentially no distance along

the waveguide.

FIG. 3. (Color online) (a) Experimental amplitude transmission (lower

trace) and phase (upper trace) as a function of frequency for four slightly

detuned Helmholtz resonators. (b) Theoretical amplitude transmission

(lower trace) and phase (upper trace) as a function of frequency for four

slightly detuned Helmholtz resonators.
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VI. CONCLUSION

In summary, we have demonstrated a sequentially

detuned Helmholtz resonator system that permits the crea-

tion of wide acoustic bandgaps in a compact format without

the need for periodicity. We showed that an existing theoreti-

cal model for a single side loading of a waveguide by a reso-

nator11 worked well to describe our single Helmholtz

resonator data. A simple extension of this model to the case

of a series of detuned Helmholtz resonators was similarly

shown to give very good agreement with experiment.

Finally, we observed that there is a characteristic phase

jump, in both theory and experiment, coincident with the

transmission minimum. We showed that the phase jumps

lead to the existence of negative group delays, albeit over

very narrow frequency intervals.
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