Physics 3000 MATLAB Exercises 4

1. This exercise concerns Nyquist’s theorem and aliasing. We will create a series of the same signal (a complex tone with 4 harmonics) but sampled at different sampling rates.  We will examine the spectrum of these signals using the Fast Fourier transform (fft) command in MATLAB. The aim is to show the consequences of undersampling a signal. 

First, the fundamental frequency of our complex tone will be 1000 Hz. [w=2*pi*1000] The complex tone that we will be examining is 
y=0.4*sin(w*t)+0.2*sin(2*w*t)+0.1*sin(3*w*t)+0.3*sin(5*w*t)

First, create 1 second of this signal using a sampling rate of 22050 samples per second. Next, take the Fourier transform [fy=fft(y)] and plot the absolute value of the Fourier transform [plot(abs(fy(1:11025))].  Why did I only plot 1 to 11025? Look at the plot.  Are the frequencies and amplitudes of the signal correct? They should be.
Now redo the process with a sampling rate of 9000 samples per second. How will you do this in practice? What changes in the process you have done above? When you plot the Fourier transform, over what range will you plot? What happens to the 5000 Hz harmonic that is not sampled at the Nyquist value of 10000 Hz?

2. Next we want to hear the consequence of undersampling by making a pure tone that rises in frequency until it goes beyond the Nyquist frequency.  What do you expect to hear in that case? 
The process to create a tone with continuously varying frequency is a bit more complicated than what we have done before.  We use the for loop given below. In class I will step you through the logic of each of the lines of MATLAB code.

for k=1:22050

w=2*pi*(200+(k-1)*0.5);

y(k)=0.9*sin(w*((k-1)/22050));

end

3. Next we examine the Fourier transform of non-periodic functions. We have seen how to synthesize waveforms by adding sine waves together. In all of our examples we used a harmonic set of sine wave frequencies so that we got a complex tone, i.e a periodic signal. Of course the Fourier transform just consisted of a series of spikes at the appropriate sine wave frequencies. Now we are going to examine the Fourier analysis of non-periodic signals. We will use a small program called “click” that I wrote to produce a short click. The width of the click is set by a parameter called s.  Type the following at the MATLAB command line

>>s=0.1

>>click

>>plot(t,y)

The figure shows the shape of the click function.  Notice that time runs from 0 to 1 second. Redo the above commands with s=0.01. What is different about the function now? We will do a series of exercises based upon making shorter and shorter clicks, listening to them, and then looking at their spectra. 

4. Next we will use the inverse Fourier transform to show that you can go from the spectrum to the time signal.  Take one of the click functions from the last example (use s=0.001). Form the spectrum using

>>fy=fft(y);

Now go back to a time signal from fy using

>>yinv=ifft(fy);

>>plot(real(yinv))

The use of the “real” command for yinv is because the Fourier transform function does not work perfectly because of the limited numerical resolution of the computer and digital representation of the signal. 

5. The inverse Fourier transform allowing a spectrum to be converted back to a time signal lets us do a digital form of filtering.  We can monkey with the spectrum—adding or deleting things—and then convert back to the time domain. The only tricky part is that the spectrum has that symmetry in which all of the frequency stuff is replicated in a reversed fashion at the right hand side of the Fourier plot. In filtering, whatever we do to the lower frequency stuff we must replicate in the corresponding high frequency replica. I’ll show you how to do this in class—it’s just a matter of careful bookkeeping.  We will look at examples of high and low pass filtering and see the effect on spectrum and time domain signals.

6. Next we will examine a small clip of a “real” signal that I obtained online.  It’s the beginning theme from the old TV show Dragnet.  You can load the file into MATLAB using the command

>>[y,Fs]=wavread(‘dragnet.wav’)

You can form the spectrum using

>>fy=fft(y);

I will take you through some filtering operations including dynamic range filtering that gives an interesting result (one that cannot be realized, as far as I know, with analog filters).

