Physics 3000: Delay lines

1. In this exercise we will be exploring the construction of a digital echo which is a form of digital delay line. This process is the first step towards building a digital reverb routine—a task we may or may not get to. An echo would result from the configuration shown in the figure below.
[image: image1.png]e War

Reflected sound from wall

v

Direct sound from source

L

The direct sound would travel a distance L and the indirect sound, that bounced off the wall, would travel further (you should be able to do the Pythagoras thing to work out how much further!). The sound that travels further would clearly take longer to arrive at the microphone and would therefore be delayed in time. We want to create a MATLAB routine that creates a time delayed version of a signal. By adding the time delayed version back with the original we can listen to what an echo does to a sound.
We are going to write a function that performs a specified delay on any signal that we hand to it. To accomplish this task open a new m-file and type the following program. Note that you do not need to type in the lines that begin with a %. These are comments to tell someone how the program works and what all the variables mean.
function [out]=delay(y,N)

% y is the array that holds the original signal that we want to delay.

% N is the number of timesteps of delay

% out is the delayed signal returned from this function. It is the same

% length as y. The initial part of out consists of N zeros.

M=max(size(y));

out=zeros(1,M);

out(N+1:M)=y(1:M-N);

When you have finished save this file with the name delay.

To test your delay function create a decaying complex tone in the Command window (not in the m-file you were editing) using

>> t=0:1/22050:1;

>> w=2*pi*300;

>> y=0.4*sin(w*t)+0.2*sin(2*w*t)+0.1*sin(3*w*t)+0.2*sin(4*w*t);

>> decay=exp(-t/0.2);

>> yd=y.*decay;

Plot yd and listen to it.

2. Now we will use your yd and your delay function to create a signal with an echo. First, create a delayed version of yd using the command

>>[out]=delay(yd,3000);

Plot yd, hold the plot, and then plot the delayed version out in a different color. Does the delay work?

Next create a single tone with an echo, called yd2, by adding yd and out. Use the command

>>yd2=(out+yd)/2;

Why divide the sum by 2? Now play the notes yd and yd2. Can you hear a difference? Does the echo sound like a distinct separate and distinguishable pulse? How much time delayed is the pulse with a 3000 step delay? For time delays of less than 60 ms there should be no distinct echo; the ear hears this as one sound. Try to verify this claim experimentally. What number of delay steps equals 60 ms? Create yd3 and yd4 with delays above and below 60 ms and listen to them.
3. Next we will explore the relation between strong echo and comb filtering. To explore the effect as a function of frequency we will use the click function that we looked at last time. Remember a short impulse contains a broad range of frequencies. Create a short click (use s=0.0001). Create a delayed version of the click—make the delay be 25 time steps. Now create a click with the echo signal (out) added to the original click (y) [use the divide by two thing again]. Now create the fft of the original click and of the click with echo. Plot the absolute values of the two fft’s on the same graph but with different colors. What is the lowest frequency that experiences destructive interference? Does this number agree with what you would expect from the delay value? As the last thing before finishing, plot out the combined impulse and delay signal. It is pretty clear from the plot that there is an echo. Note that in reality the echo would be weaker than the original signal because it had traveled further and it has bounced off a surface. What happens if the delay is larger? Does the interference pattern remain the same? If you have time try to explore this avenue by creating a more delayed signal.
4. In the last experiment we used the fact that an impulse has a broad range of frequencies to get the frequency dependent response of an echo. Now we will use the more traditional method of a white noise signal. Create 1 second of white noise using the commands
>>for k=1:22050

y(k)=(2*rand)-1;

end

Remembering than rand produces a random number between 0 and 1, what will be the maximum and minimum value of the noise signal y? Create a delayed value of the noise signal and then add it back with the original y to create a signal with echo, yd. Take the ffts of both y and of yd. Plot the magnitudes of the fourier signals in different colors on the same graph. In the frequency spectrum the effect of the echo is clear. In contrast, in the plot of the signal with echo, yd, in the time domain does not really show any discernable echo-ness.

5. We are now going to see how the transfer function, h (the ratio of the Fourier transforms of the signal with reflections(s) compared to the signal without reflections) can be used to modify a signal so that it has the properties of the space described by the transfer function. In our simple simulations the transfer function is that of a direct sound mixed with a single strong reflection. In a real room there would be many reflections with different delays and the amplitude of each reflection would become smaller and smaller. There are a bunch of steps in this process

(a) Make a transfer function h by following the steps given in step 3 above only make the delay much longer (say 3000 steps instead of 25).

(b) Make 1 second of a complex tone with 3 harmonics 400 Hz, 800 Hz, 1200 Hz. Call it test (use the sampling frequency of 22050).

(c) Create an envelope to modulate the complex tone to make an exponentially decaying note (take your test from part (b) and dot star multiply by exp(-t/0.3) [>>test=test.*exp(-t/0.3);] . Listen to the note—it should sound like a plucked guitar string.

(d) Take the Fourier transform of the decaying test tone call it ftest.

(e) Create the spectrum of the test tone by dot star multiplying ftest by h [>>ftestfilt=ftest.*h;]

(f) Now turn the ftestfilt spectrum into a time domain signal using [>>testfilt=real(ifft(ftestfilt));]

(g) Plot and listen to the new tone testfilt. You should hear that it has the same delay that you put in to the original signal created with the clicks. The point here is that the transfer function allows us to capture the effect of reflections and then transfer that effect to a new dry sound file. The method of making this transfer is by multiplication of the spectrum of the sound by the transfer function.
