Species Composition of Forensically-Important Flies Associated with Human Decomposition at The Body Farm

Omar Ali¹, Yangseung Jeong²

¹Biochemistry, ²Forensic Science Program

INTRODUCTION

Insects are one of the primary factors that affect the pattern and rate of human decomposition. Particularly, blow flies (Diptera: Calliphoridae) are one of the first insects that access dead bodies and lay eggs, of which maggots consume soft tissues. The Anthropological Research Facility (ARF, also called the ‘Body Farm’) of the University of Tennessee has been used for human decomposition research for 40 years. However, it has not been fully investigated which species of flies are present and affect human decomposition at the ARF. The purpose of this study is to investigate the seasonal and regional composition of flies at the ARF.

MATERIALS AND METHODS

Sample collection and storage

- Flies were collected from 27 traps (open for 24 hours) at the ARF twice a month from March 2018 – April 2019.
- Flies were frozen at Dr. Jeong’s lab and pinned with their ID numbers.

Morphological identification

- Morphological identification has been performed by Omar Ali, Simon Pergande, Dr. Jeong, and three forensic entomologists (Dr. Weidner [Arizona State Univ.], Dr. Gemmellaro [Kean Univ.], Dr. Yussef-Venegas [San Diego Natural History Museum]).

Weather information

- Weather data (e.g., temperature, humidity, and rainfall) have also been collected from the weather station set up at the ARF.

RESULTS & DISCUSSION

A total of 3,355 flies were collected, approximately 95% of which (3,188 out of 3,355) were blowflies (Diptera: Calliphoridae). The greatest number of flies were caught in May and June 2018 (1,016 and 1,068, respectively), and no flies were collected between December 2018 – March 2019. The number of flies caught by month is presented in Table 1.

Nearly 91% of the blowfly specimens consist of three species: P. regina (65.1%), L. coeruleiviridis (20.3%), and L. illustris (5.3%) (Table 2). P. regina was the most dominant species most of the time except for September through November when L. coeruleiviridis was not dominant (Fig. 1).

Omar Ali, who has less than one year of fly identification experience, showed approximately 70% of correct identification ratio (204 out of 294 specimens). Most of the non-matches comprise Lucilia coeruleiviridis, Phormia regina, and Non-Calliphoridae group.

Heat maps were generated to exhibit the change of regional distributions of flies at the ARF by month. (only the heat maps from March to October 2018 are presented here). As of March 2020, identification of possible factors that influence their regional distribution (e.g., temperature, decomposition states of nearby bodies, and fly species) is currently under analysis in collaboration with the Forensic Anthropology Center of the University of Tennessee.

ACKNOWLEDGEMENT

- This research has been funded by the Undergraduate Research Experience and Creative Activity (URECA) and Faculty Research and Creative Activity Committee (FRAC) grant of Middle Tennessee State University.

Table 1. Number of flies caught by month

<table>
<thead>
<tr>
<th>Month</th>
<th>Mar '18</th>
<th>Apr '18</th>
<th>May '18</th>
<th>Jun '18</th>
<th>Jul '18</th>
<th>Aug '18</th>
<th>Sep '18</th>
<th>Oct '18</th>
<th>Nov '18</th>
<th>Dec '18</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td># flies</td>
<td>6</td>
<td>367</td>
<td>1,016</td>
<td>1,068</td>
<td>250</td>
<td>122</td>
<td>104</td>
<td>268</td>
<td>68</td>
<td>86</td>
<td>3,355</td>
</tr>
</tbody>
</table>

Introducing the World's First Forensic Science Undergraduate Research Conference

The National Conference on Undergraduate Research (NCUR) is the largest undergraduate research conference in the United States, providing a platform for students to present their research, engage with peers, and network with faculty. This year, the conference will feature a special session on forensic science, highlighting the latest advancements and fostering collaboration among emerging scholars and experts in the field.