Dr. Jeff Leblond

Professor

Dr. Jeff Leblond
615-898-5205
Room 2051, Science Building (SCI)
MTSU Box 60, Murfreesboro, TN 37132

Degree Information

  • Ph.D., University of Tennessee, Knoxville (1997)
  • B.S., University of Massachusetts, Amherst (1993)

Areas of Expertise

Lipid biochemistry of algae, particularly marine dinoflagellates

Biography

Appointments
Middle Tennessee State University Dept. of Biology Professor 2010-present
Middle Tennessee State University Dept. of Biology Assoc. Prof. 2005-2010
Middle Tennessee State University Dept. of Biology Assist. Prof. 2000-2005
Univ. of Tennessee, Knoxville Dept. of Microbiol. Res. Asst. 1994-1997
Univ. of Tennessee, Knoxville Dept. of Microbiol. Teach. Asst. 1993-1994

Extramural Funding
NSF Proposal#: 0816787
Sole PI: Jeffrey D. ...

Read More »

Appointments
Middle Tennessee State University Dept. of Biology Professor 2010-present
Middle Tennessee State University Dept. of Biology Assoc. Prof. 2005-2010
Middle Tennessee State University Dept. of Biology Assist. Prof. 2000-2005
Univ. of Tennessee, Knoxville Dept. of Microbiol. Res. Asst. 1994-1997
Univ. of Tennessee, Knoxville Dept. of Microbiol. Teach. Asst. 1993-1994

Extramural Funding
NSF Proposal#: 0816787
Sole PI: Jeffrey D. Leblond
Amount funded: $156,000
Funding period: 9/2008 � 8/2011
Title: Sterol Biosynthesis in the Harmful Marine Dinoflagellate, Karenia brevis.


« Read Less

Publications

  • Leblond, J.D., Duong, L., Khadka, M. & Dahmen, J.L. Squishy lipids: temperature effects on the betaine and galactolipid profiles of a C18/C18 peridinin-containing dinoflagellate, Symbiodinium microadriaticum (Dinophyceae), isolated from the mangrove jellyfish, Cassiopea xamachana. Submitted to Phyc. Res.
  • Duong, L., Li, C & Leblond, J.D. A data-mining approach to clustering of sterols of cnidarians. Submitted to Symbiosis.
  • Craig, E.M., Dahmen, J.L. & Lebl...
Read More »
  • Leblond, J.D., Duong, L., Khadka, M. & Dahmen, J.L. Squishy lipids: temperature effects on the betaine and galactolipid profiles of a C18/C18 peridinin-containing dinoflagellate, Symbiodinium microadriaticum (Dinophyceae), isolated from the mangrove jellyfish, Cassiopea xamachana. Submitted to Phyc. Res.
  • Duong, L., Li, C & Leblond, J.D. A data-mining approach to clustering of sterols of cnidarians. Submitted to Symbiosis.
  • Craig, E.M., Dahmen, J.L. & Leblond, J.D. Temperature modulation and the presence of ânon-greenâ C20 fatty acids in mono- and digalactosyldiacylglycerol of Euglena gracilis and Lepocinclis acus: A modern interpretation of euglenid galactolipids using positive-ion electrospray ionization/mass Spectrometry. Submitted to Phycol. Res.
  • Dahmen, J.L. & Leblond, J.D. Evidence for a chromalveolate origin of glycolipid synthesis in
    Bigelowiella natans, a chlorarachniophyte containing a green algal chloroplast. Submitted to
    Protist Genomics.
  • Khadka, M. & Leblond, J.D. Sterol composition and biosynthetic genes of Vitrella brassicaformis, a recently discovered chromerid: comparison to Chromera velia and phylogenetic relationship to apicomplexan parasites. Submitted to J. Euk. Microbiol.
  • Dodson, V.J. & Leblond, J.D. Now you see it, now you don't: Differences in hydrocarbon production in the diatom Phaeodactylum tricornutum due to growth temperature. J. Appl. Phycol.
    In Press.
  • Khadka, M., Dahmen, J.L., Salem, M. & Leblond, J.D. 2014. Comparative study of galactolipid composition and biosynthetic genes for galactolipid synthases in Vitrella brassicaformis and Chromera velia, two recently identified chromerids with red algal-derived plastids. Algological Studies. 144:73-93.
  • Dodson, V.J., Mouget, J.-L., Dahmen, J.L. & Leblond, J.D. 2014. The long and short of it:
    Temperature-dependent modifications of fatty acid chain length and unsaturation in the
    galactolipid profiles of the diatoms Haslea ostrearia and Phaeodactylum tricornutum.
    Hydrobiologia. 727:95-107.
  • Leblond, J.D., Dodson, V.J. & Dahmen, J.L. 2013. Mono- and digalactosyldiacylglycerol
    composition of dinoflagellates. VII. Evidence against galactolipid production and plastid
    presence in the heterotrophic, basal dinoflagellate, Oxyrrhis marina. Eur. J. Phycol. 48:309-317.
  • Leblond, J.D., Dahmen, A.S., Dodson, V.J. & Dahmen, J.L. 2013. Characterization of the betaine lipids, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) and diaclyglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA), in brown- and green-pigmented raphidophytes. Algological Studies 142:17-28.
  • Dodson, V.J., Dahmen, J.L., Mouget, J.-L. & Leblond, J.D. 2013. Mono- and
    digalactosyldiacylglycerol composition of the marennine-producing diatom, Haslea ostrearia:
    comparison to a selection of pennate and centric diatoms. Phyc. Res. 61:199-207.
  • Leblond, J.D., Dahmen, A.S., Lebret, K. & Rengefors, K. 2013. Sterols of the green-pigmented, freshwater raphidophyte, Gonyostomum semen (Raphidophycea), from Scandinavian
    lakes. J. Euk. Microbiol. 60:399-405.
  • Dahmen, J.L., Khadka, M., Dodson, J. & Leblond, J.D. 2013. Mono- and digalactosyldiacylglycerol composition of dinoflagellates. VI. Biochemical and genomic comparison of galactolipid biosynthesis between Chromera velia (Chromerida), a photosynthetic alveolate with a red algal plastid ancestry, to the dinoflagellate, Lingulodinium polyedrum. Eur. J. Phycol. 48:268-277.
  • Dahmen, J.L. & Leblond, J.D. 2013. Structural analysis and cellular localization of polyunsaturated C27 hydrocarbons in the marine dinoflagellate, Pyrocystis lunula (Dinophyceae). Protist. 164:183-94.
  • Leblond, J.D., Porter, N.M., Roche, S.A. & Dunlap, N.K. 2012. Production of stigmasterol by the harmful marine dinoflagellate, Karenia brevis. In Pagou, P. & Hallegraeff, G. [Eds.] Proceedings of the 14th Annual International Conference on Harmful Algae. pp. 229-31.
  • Leblond, J.D. & Dahmen, J.L. 2012. Mono- and digalactosyldiacylglycerol composition of
    dinoflagellates. V. Galactolipid profile of Alexandrium tamarense (Dinophyceae) during the
    course of an infection by the parasitic dinoflagellate, Amoebophrya sp. Eur. J. Phycol.
    47:490-7.
  • Leblond, J.D., Dodson, J., Khadka, M., Holder, S. & Seipelt, R.S. 2012. Sterol composition and biosynthetic genes of the recently discovered photosynthetic alveolate, Chromera velia
    (Chromerida), a close relative of apicomplexans. J. Euk. Microbiol. 59:191-197.
  • Leblond, J.D. & Lasiter, A.D. 2012. Sterols of the green-pigmented, aberrant plastid dinoflagellate, Lepidodinium chlorophorum (Dinophyceae). Protist 163:38-46.
  • Dahmen, J.L. & Leblond, J.D. 2011. Free sterol composition of species in the dinoflagellate genus, Pyrocystis: a spectrum of sterol diversity. J. Euk. Microbiol. 58:475-9.
  • Leblond, J.D., Timofte, H.I., Roche, S.A. & Porter, N.M. 2011. Sterols of glaucocystophytes. Phycological Res. 59:129-34.
  • Roche, S.A. & Leblond, J.D. 2011. Mono- and digalactosyldiacylglycerol composition of
    raphidophytes (Raphidophyceae): a modern interpretation using positive-ion electrospray/mass
    spectrometry/mass spectrometry. J. Phycol. 47:106-11.
  • Leblond, J.D., Roche, S.A., Porter, N.M., Howard, J.C, & Dunlap, N.K. 2011. Sterol biosynthesis in the harmful marine dinoflagellate, Karenia brevis: identification of biosynthetic intermediates produced during exposure to the fungicide fenpropidine. Phycological Res. 59:54-63.
  • Roche, S.A. & Leblond, J.D. 2010. Betaine lipids in chlorarachniophytes. Phycological Res. 58:298-305.
  • Leblond, J.D., Timofte, H.I., Roche, S.A., & Porter, N.M. 2010. Mono- and
    digalactosyldiacylglycerol composition of glaucocystophytes (Glaucophyta): a modern
    interpretation using positive-ion electrospray/mass spectrometry/mass spectrometry. Phycological Res. 58:222-9.
  • Leblond, J.D., Lasiter, A.D., Li, C., Logares, R., Rengefors, K., & Evens, T.J. 2010. A data mining approach to dinoflagellate clustering according to sterol composition: correlations with
    evolutionary history. Int. J. Data Mining and Bioinformatics. 4:431-51.
  • Leblond, J.D., Dahmen, J.L., & Evens, T.J. 2010. Mono- and digalactosyldiacylglycerol composition of dinoflagellates. IV. Temperature-induced modulation of fatty acid regiochemistry as observed by electrospray ionization/mass spectrometry. Eur. J. Phycol. 45:13-8.
  • Gray, C.G., Lasiter, A.D., & Leblond, J.D. 2009. Mono- and digalactosyldiacylglycerol composition of dinoflagellates. III. Four cold-adapted, peridinin-containing taxa and the presence of trigalactosyldiacylglycerol as an additional glycolipid. Eur. J. Phycol. 44:439-45.
  • Leblond, J.D. & Lasiter, A.D. 2009. Mono- and digalactosyldiacylglycerol composition of
    dinoflagellates. II. Lepidodinium chlorophorum, Karenia brevis, and Kryptoperidinium
    foliaceum, three dinoflagellates with aberrant plastids. Eur. J. Phycol. 44:199-205.
  • Gray, C.G., Lasiter, A.D., Li C., & Leblond, J.D. 2009. Mono- and digalactosyldiacylglycerol composition of dinoflagellates. I. Peridinin-containing taxa. Eur. J. Phycol. 44:191-7.
  • Leblond, J.D. & Roche, S.A. 2009. Mono- and digalactosyldiacylglycerol composition of
    chlorarachniophytes (Chlorarachniophyceae): production of a novel lauric acid (12:0)-containing
    form of monogalactosyldiacylglycerol (MGDG). Phycologia 48:101-4.
  • Leblond, J.D., Lasiter, A.D., Li, C., Logares, R., Rengefors, K., & Evens, T.J. 2008. Applying clustering and phylogeny analysis to study dinoflagellates based on sterol composition. In Chen, X.W., Hu, X.H., & Kim, S. [Eds.] Proceedings of IEEE International Conference on
    Bioinformatics and Biomedicine. pp. 90-7.
  • Leblond, J.D., Anderson, B., Kofink, D., Logares, R., Rengefors, K. & Kremp, A. 2006. Fatty acid and sterol composition of two evolutionarily closely related dinoflagellate morphospecies from cold Scandinavian brackish and freshwaters. Eur. J. Phycol. 41:303-11.
  • Leblond, J.D., Sengco, M.R., Sickman, J. O., Dahmen, J.L. & Anderson, D.A. 2006. Sterols of the syndinian dinoflagellate, Amoebophrya sp., a parasite of the dinoflagellate Alexandrium tamarense (Dinophyceae). J. Eukaryotic Microbiol. 53:211-16.
  • Rogers, J.E., Leblond, J.D. & Moncrieff, C.A. 2006. Phylogenetic relationship of Alexandrium monilatum (Dinophyceae) to other Alexandrium species based on 18S ribosomal RNA gene sequences. Harmful Algae 5:272-80.
  • Leblond, J.D., Dahmen, J.L., Seipelt, R.L., Elrod-Erickson, M.J., Kincaid, R., Howard, J.C., Evens, T.J. & Chapman, P.J. 2005. Lipid composition of chlorarachniophytes (Chlorarachniophyceae) from the genera Bigelowiella, Gymnochlora, and Lotharella. J. Phycol. 41:311-21.
  • Evens, T.J. & Leblond, J.D. 2004. Photophysiology of the Florida red tide dinoflagellate, Karenia brevis: Modifications in thylakoid lipid composition in response to environmental conditions. In Steidinger, K.A., Landsberg, J.H., Tomas, C.R., & Vargo, G.H. [Eds.] Proceedings of Harmful Algae 2002. pp. 414-6.
  • Leblond, J.D. & Chapman, P.J. 2004. Sterols of the heterotrophic dinoflagellate, Pfiesteria piscicida (Dinophyceae): is there a lipid biomarker? J. Phycol. 40:104-11.
  • Leblond, J.D., Evens, T.J. & Chapman, P. J.2003. The biochemistry of dinoflagellate lipids, with particular reference to the fatty acid and sterol composition of a Karenia brevis bloom. Phycologia 42:324-31.
  • Leblond, J.D. & Chapman, P.J. 2002. A survey of the sterol composition of the marine dinoflagellates Karenia brevis, Karenia mikimotoi, and Karlodinium micrum: distribution of sterols within other members of the class Dinophyceae. J. Phycol. 38:670-82.
  • Leblond, J.D., Schultz, T.W. & Sayler, G.S. 2001. Observations on the preferential
    biodegradation of selected components of polyaromatic hydrocarbon mixtures. Chemosphere
    42:333-43.
  • Leblond J.D. & Chapman P.J. 2000. Lipid class distribution of highly unsaturated long-chain fatty acids in marine dinoflagellates. J. Phycol. 36:1103-8.
  • Leblond J.D, Applegate B.M., Menn F.-M., Schultz T.W. & Sayler G.S. 2000. Structure-
    toxicity assessment of metabolites of the aerobic bacterial transformation of substituted
    naphthalenes. Environ. Toxicol. Chem. 19:1235-46.

« Read Less

Research/Scholarly Activity

Current research in the Leblond laboratory focuses on two important aspects of algal lipid biochemistry:

Characterization of chloroplast glycolipids - Chlamydomonas reinhardtii has been a model photosynthetic organism for decades because it is easy to grow under a variety of conditions and is amenable to genetic analysis. This has led to the accumulation of a substantial amount of genomic, biochemical, and physiological data that a...

Read More »

Current research in the Leblond laboratory focuses on two important aspects of algal lipid biochemistry:

Characterization of chloroplast glycolipids - Chlamydomonas reinhardtii has been a model photosynthetic organism for decades because it is easy to grow under a variety of conditions and is amenable to genetic analysis. This has led to the accumulation of a substantial amount of genomic, biochemical, and physiological data that allow an interdisciplinary, systems-level approach to elucidating the function of complex biological phenomena, such as oxygenic photosynthesis. Within the boundaries of temperature, irradiance, and macronutrient proportion/concentration, Dr. Leblond, in collaboration with Dr. Bruce Cahoon and Dr. T. J. Evens (USDA) are currently conducting experiments to quantify the influence of the above variables on: 1) the photoacclimatory status of C. reinhardtii; 2) the lipidome of C. reinhardtii, emphasizing thylakoid lipids; 3) expression of major photosynthesis and lipid biosynthesis genes under all of the conditions. They are developing an empirical model to explain the photosynthetic performance of C. reinhardtii using this work and methodology developed in several previous studies on the lipids of dinoflagellate and chlorarachniophyte algae (Gray, 2009; Leblond and Roche, 2009; Leblond and Lasiter, 2009).

Elucidation of steps in sterol biosynthesis - Ongoing research to elucidate specific biochemical steps involved in sterol biosynthesis in Karenia brevis, an environmentally important dinoflagellate that forms seasonal red tides in the Gulf of Mexico and that produces unusual biomarker sterols (Leblond, 2002). This eukaryotic microbe is not considered to be a model organism (such as the well-studied yeast and green algal genera Saccharomyces and Chlamydomonas, respectively), yet it greatly impacts human activity. Data from this project will further our understanding of a key biochemical process in this particular organism as well provide the basis for similar studies in other environmentally and economically important dinoflagellates.

« Read Less